Archive
Special Issues
Electroelastic Actuator Nano- and Microdisplacement for Precision Mechanics
American Journal of Mechanics and Applications
Volume 6, Issue 1, March 2018, Pages: 17-22
Received: Dec. 28, 2017; Accepted: Jan. 29, 2018; Published: Mar. 6, 2018
Author
Sergey Mikhailovich Afonin, Department of Intellectual Technical Systems, National Research University of Electronic Technology (MIET), Moscow, Russia
Article Tools
Abstract
In the present work the structural-parametric model of the piezoactuator is determined in contrast electrical equivalent circuit types Cady or Mason for the calculation of the piezoelectric transmitter and receiver, the vibration piezoactuator and the vibration piezomotor with the mechanical parameters in form the velosity and the pressure. The aim of this work is to obtain the structural-parametric model of the electroelastic actuator with the mechanical parameters the displacement and the force. The method of mathematical physics is used. Structural scheme of electroelastic actuator for nanotechnology is obtained. The transfer functions of the actuators are determined. For calculations control systems for nanotechnology with piezoactuator the structural scheme and the transfer functions of piezoactuator are obtained. The generalized structural-parametric model, the generalized structural scheme, the generalized matrix equation for the electroelastic actuator nano- and microdisplacement are obtained in the matrix form. The deformations of the electroelastic actuator for the precision mechanics are described by the matrix equation.
Keywords
Electroelastic Actuator, Piezoactuator, Nanodisplacement, Structural Model and Scheme, Transfer Function
Sergey Mikhailovich Afonin, Electroelastic Actuator Nano- and Microdisplacement for Precision Mechanics, American Journal of Mechanics and Applications. Vol. 6, No. 1, 2018, pp. 17-22. doi: 10.11648/j.ajma.20180601.14
References
[1]
J. Schultz, J. Ueda, H. Asada, Cellular actuators. Oxford: Butterworth-Heinemann Publisher. 2017, 382 p.
[2]
S. Zhou, Z Yao, “Design and optimization of a modal-independent linear ultrasonic motor,” IEEE transaction on ultrasonics, ferroelectrics, and frequency control 61, 3, 535-546 (2014), doi:10.1109/TUFFC.2014.2937.
[3]
J. Przybylski, “Static and dynamic analysis of a flextensional transducer with an axial piezoelectric actuation,” Engineering structures 84, 140-151 (2015), doi:10.1016/j.engstruct.2014.11.025.
[4]
J. Ueda, T. Secord, H. H. Asada, “Large effective-strain piezoelectric actuators using nested cellular architecture with exponential strain amplification mechanisms,” IEEE/ASME transactions on mechatronics 15, 5, 770-782 (2010), doi:10.1109/TMECH.2009.2034973.
[5]
M. Karpelson, G.-Y. Wei, R. J. Wood, “Driving high voltage piezoelectric actuators in microrobotic applications,” Sensors and actuators A: Physical 176, 78-89 (2012), doi:10.1016/j.sna.2011.11.035.
[6]
S. M. Afonin, “Block diagrams of a multilayer piezoelectric motor for nano- and microdisplacements based on the transverse piezoeffect,” Journal of computer and systems sciences international 54, 3, 424-439 (2015), doi: 10.1134/S1064230715020021.
[7]
S. M. Afonin, “Absolute stability conditions for a system controlling the deformation of an elecromagnetoelastic transduser,” Doklady mathematics 74, 3, 943-948 (2006), doi:10.1134/S1064562406060391.
[8]
S. M. Afonin, “Stability of strain control systems of nano-and microdisplacement piezotransducers,” Mechanics of solids 49, 2, 196-207 (2014), doi:10.3103/S0025654414020095.
[9]
S. M. Afonin, “Structural parametric model of a piezoelectric nanodisplacement transduser,” Doklady physics, 53, 3, 137-143 (2008), doi:10.1134/S1028335808030063.
[10]
S. M. Afonin, “Solution of the wave equation for the control of an elecromagnetoelastic transduser,” Doklady mathematics 73, 2, 307-313 (2006), doi:10.1134/S1064562406020402.
[11]
W. G. Cady, Piezoelectricity: An introduction to the theory and applications of electromechancial phenomena in crystals. New York, London: McGraw-Hill Book Company. 1946, 806 p.
[12]
Physical acoustics: Principles and methods. Vol.1. Part A. Methods and devices. Ed.: W. Mason. New York: Academic Press. 1964. 515 p.
[13]
D. Zwillinger, Handbook of differential equations. Boston: Academic Press. 1989. 673 p.
[14]
S. M. Afonin, “Structural-parametric model and transfer functions of electroelastic actuator for nano- and microdisplacement,” Chapter 9 in Piezoelectrics and nanomaterials: Fundamentals, developments and applications. Ed. I. A. Parinov. New York: Nova Science. 2015, pp. 225-242.
[15]
S. M. Afonin, “A structural-parametric model of electroelastic actuator for nano- and microdisplacement of mechatronic system,” Chapter 8 in Advances in nanotechnology. Volume 19. Eds. Z. Bartul, J. Trenor. New York: Nova Science. 2017, pp. 259-284.
[16]
S. M. Afonin, “Generalized parametric structural model of a compound elecromagnetoelastic transduser,” Doklady physics 50, 2, 77-82 (2005), doi:10.1134/1.1881716.
[17]
S. M. Afonin, “Generalized hysteresis characteristic of a piezoelectric transducer and its harmonic linearization,” Mechanics of solids 39, 6, 14-19 (2004).
[18]
S. M. Afonin, “Nano- and micro-scale piezomotors,” Russian engineering research 32, 7-8, 519-522 (2012), doi:10.3103/S1068798X12060032.
[19]
S. M. Afonin, “Elastic compliances and mechanical and adjusting characteristics of composite piezoelectric transducers,” Mechanics of solids 42, 1, 43-49 (2007), doi:10.3103/S0025654407010062.
[20]
S. M. Afonin, “Structural-parametric model electromagnetoelastic actuator nanodisplacement for mechatronics,” International journal of physics 5, 1, 9-15 (2017).
PUBLICATION SERVICES