Phase Formation and Crystallinity-Dependent Magnetic Parameters of Co1-xFe2+xO4 Nanoparticals
American Journal of Physics and Applications
Volume 3, Issue 2, March 2015, Pages: 33-38
Received: Dec. 14, 2014; Accepted: Jan. 29, 2015; Published: Mar. 4, 2015
Views 2858      Downloads 140
Authors
Nahed Makram Eyssa, Physics Department, Faculty of Science, Girls Branch, Al-Azhar University, Cairo, Egypt
Hanan Hassan Hantour, Physics Department, Faculty of Science, Girls Branch, Al-Azhar University, Cairo, Egypt
Kamilia Sdeek Abdo, Physics Department, Faculty of Science, Girls Branch, Al-Azhar University, Cairo, Egypt
Article Tools
Follow on us
Abstract
Nano crystalline cobalt ferrite CoFe2O4 powders were synthesized using the coprecipitation method. The effect of the calcination temperature and the Fe3+/Co2+ molar ratio on the phase formation, macro and microstructure and magnetic properties was studied systematically. The Fe3+/Co2+ was controlled to equal 2 and 2.75 while the annealing temperature (Ta) was adjusted to vary from 600 to 1000Co. the obtained powders were investigated using x-ray diffraction (XRD) analysis, Field emission scanning electron microscope (FESEM), Fourir transformation infrared spectroscopy (FTIR) and vibrating sample magnetometer (VSM). For both the Fe3+/Co2+ ratios, the XRD results indicat the formation of well crystallized cubic spinel cobalt ferrite phase for the precursors annealed at 600Co up to 1000Co. However a second rhombohedral hematite phase whose content varies respectively from 3% and 15% was formed as the Fe3+/Co2+ varied from 2 to 2.75 at Ta=800 and 1000Co. The crystallite size (Dβ) as determined applying the win-fit program was found also to decrease from 54.5 to 48.6nm accompanied by an increase of the root mean square strain < eg>. Using Rditveld analysis no effect on the value of the lattice parameter (a) was detected. The FESEM micrographs reveal the formation of highly agglomerated particles for Fe3+/Co2+ =2.75 and Ta =1000Co. The FTIR analysis confirm the formation of the spinel structure phase for both Fe3+/Co2+ ratios at 1000Co, however the absorption bands shift to higher frequencies for Fe3+/Co2+ =2.75. Other bands at 1663 and 3472cm-1 ascribed to free or absorbed water molecules were also detected for this ratio. The Fe3+/Co2+ molar ratio was found to have a significant effect on the magnetic properties of the produced cobalt ferrite. The calculated magnetic parameters: the saturation magnetization (MS= 71.219emu/g), the coricivity (HC= 1443.8Oe) and the remanence ratio (Mr/MS= 0.405) were recorded to decrease as the Fe3+/Co2+ increases except for the curie temperature (TC) which increase from 405 to 410Co.
Keywords
Co Ferrite, Synthesized Using the Coprecipitation Method, Structure & Microstructure, Confirm the Formation of the Functional Groups of the Ferrite Structure and Magnetic Properties
To cite this article
Nahed Makram Eyssa, Hanan Hassan Hantour, Kamilia Sdeek Abdo, Phase Formation and Crystallinity-Dependent Magnetic Parameters of Co1-xFe2+xO4 Nanoparticals, American Journal of Physics and Applications. Vol. 3, No. 2, 2015, pp. 33-38. doi: 10.11648/j.ajpa.20150302.14
References
[1]
Y. Kitamoto, S. Kantake, F. Shirasaki, M. Abe, M. Naoe, J. Appl. Phys. 85(1999)4708.
[2]
M. H. Sousa, F. A. Tourinho, J. Phys. Chem., B 105 (2001) 1168.
[3]
Dennis E. Speliotis, J. Magn. Magn. Mater. 193 (1999) 29.
[4]
Z. Ali, A. Atta, Y. Abbas, K. Sedeek, A. Adam, E. Abdetwab, J. thin solid films, xx (2014) xx
[5]
P. C. Dorsey, P. Lubitz, K. B. Chrisey, J. S. Horwitz, J. Appl. Phys. 79 (1996) 6338.
[6]
J. G. Lee, J. Y. Park, Y. J. Oh, C. S. Kimat Nanotech, Nanofabrication Facility at UC, Santa Barbara, 2003, pp. 106–107 , J. Appl. Phys. 84 (1998) 2801.
[7]
A. K. Giri, K. Pellerin, W. Pongsaksawad, M. Sorescu, S. Majetich, IEEE Trans. Magn. 36 (2000) 3029.
[8]
A. K. Giri, E. M. Kirkpatrick, P. Moongkhamklang, S. A. Majetich, Appl. Phys. Lett. 80 (2002) 2341.
[9]
M. Grigorova, H. J. Blythe, V. Blaskov, V. Rusanov, V. Petkov, V. Masheva, D. Nihtianova, Ll. M. Martinez, J. S. Mu˜noz, M. Mikhov, J. Magn. Magn. Mater. 183 (1998) 163.
[10]
J. L. Dorman, D. Fiorani (Eds. ), Magnetic Properties of Fine Particles, North-Holland, Amesterdam, 1997.
[11]
C. Inui, Y. Tsuge, H. Kura, S. Fujihara, S. Shiratori, T. Sato, Thin Solid Films 516 (2008) 2454.
[12]
W. Zhao, J. Gu, L. Zhang, H. Chen, J. Shi, J. Am. Chem. Soc. 127 (2005) 8916.
[13]
J. M. Perez, F. J. Simeone, A. Tsourkas, L. Josephson, R. Weissleder, Nano Lett. 4 (2004) 119.
[14]
J. G. Na, T. D. Lee, S. J. Park, IEEE Trans. Magn. 28 (1992) 2433.
[15]
C. C. H. Lo, A. P. Ring, J. E. Snyder, D. C. Jiles, IEEE Trans. Magn. 41(2005) 3676.
[16]
Y. Köseoğlu, M. Bay, M. Tan, A. Baykal, H. Sözeri, R. Topkaya, N. Akdoğan, J. Nanopart. Res. 13 (2011) 2235.
[17]
N. Kasapoğlu, A. Baykal, Y. Köseoğlu, M. S. Toprak, Scripta Mater. 57(2007) 441.
[18]
H. Yang, X. Zhang, A. Tang, G. Qiu, Chem. Lett. 33 (7) (2004) 826.
[19]
R. Honrada, R. Seshadri, A. Risbud, NNUN REU Program at nanotech, nanofabrication facility at UC, Santa Barbara, 2003, pp. 106-107.
[20]
C. H. Chia, S. Zakaria, M. Yusoff, S. C. Goh, C. Y. Hawa, Sh. Ahmadi, N. M. Huang, H. N. Lim, J. Ceramics International 36 (2010) 605.
[21]
Hamid Emadi, Ali Nemati Kharat, J. Industrial and Engineering Chemistry, xx (2014) xx.
[22]
Sheenu Jauhar, SonalSinghal, Ceramics International 40(2014)11845.
[23]
Yüksle Köseoğlu. Furkan Alan, Muhammed Tan, Resul Yilgin, Mustafa öztürk, J. Ceramics International 38 (2012) 3625.
[24]
A. M. Al-Saie, M. Bououdina, A. Jaffar, S. Arekat, John M. Melnyczuk, Ynhi T. Thai, Christopher S. Brazel, J. Alloys and compounds 5095 (2011) 5393.
[25]
R. M. Mohamed, M. M. Rashad, F. A. Haraz, W. Sigmund, J. Magnetism and Magnetic Materials, 322 (2010)2058.
[26]
Ovidiu Caltun, Ioan Dumitru, Marcel Feder, Nicoleta Lupu, Haria Chiriac, J. Magn. Magn. Mater. 320 (2008) e869.
[27]
P. Scardi, L. Lutterotti, and P. Masiterlli. Powder Diff. , 9(3) (1994)180.
[28]
Karimat El-Sayed, Z. K. Heiba, K. Sedeek, H. H. Hantour, J. Alloys and compounds, 530 (2012) 102.
[29]
Karimat El-Sayed, K. Sedeek, Z. K. Heiba, H. H. Hantour, J. Materials research bulletin, 48 (2013) 2383.
[30]
R. D Waldron, Phys. Rev. 99(1955) 1727.
[31]
Z. Karimi, Y. Mohammadifar, H. Shokrollahi , Sh. KhamenehAsl , Gh. Yousefi, L. Karimi J. Magn. Magn. Mater, 361(2014)150.
[32]
I. Sharifi, H. Shokrollahi, J. Magn. Magn. Mater, 324(2012)2397.
[33]
M. M. Rashad, R. M. Mohamed, H. El-Shall, J. Mater. Process. Technol. 198 (2008) 139.
[34]
L. BenTahar, M. Artus, S. Ammar, L. S. Smiri, F. Herbst, M. -J. Vaulay, V. Richard, J. -M. Gren _eche, F. Villain, F. Fie´ vet, J. Magn. Magn. Mater. 320(2008)3242.
[35]
D. H. Kim, D. E. Nikles, D. T. Johnson, C. S. Brazel, J. Magn. Magn. Mater. 320 (2008) 2390.
[36]
M. Faraji, Y. Yamini, M. Rezaee, J. Iran. Chem. Soc. 7 (2010)1.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186