Phase Formation and Crystallinity-Dependent Magnetic Parameters of Co1-xFe2+xO4 Nanoparticals
American Journal of Physics and Applications
Volume 3, Issue 2, March 2015, Pages: 33-38
Received: Dec. 14, 2014;
Accepted: Jan. 29, 2015;
Published: Mar. 4, 2015
Views 2858 Downloads 140
Authors
Nahed Makram Eyssa, Physics Department, Faculty of Science, Girls Branch, Al-Azhar University, Cairo, Egypt
Hanan Hassan Hantour, Physics Department, Faculty of Science, Girls Branch, Al-Azhar University, Cairo, Egypt
Kamilia Sdeek Abdo, Physics Department, Faculty of Science, Girls Branch, Al-Azhar University, Cairo, Egypt
Nano crystalline cobalt ferrite CoFe2O4 powders were synthesized using the coprecipitation method. The effect of the calcination temperature and the Fe3+/Co2+ molar ratio on the phase formation, macro and microstructure and magnetic properties was studied systematically. The Fe3+/Co2+ was controlled to equal 2 and 2.75 while the annealing temperature (Ta) was adjusted to vary from 600 to 1000Co. the obtained powders were investigated using x-ray diffraction (XRD) analysis, Field emission scanning electron microscope (FESEM), Fourir transformation infrared spectroscopy (FTIR) and vibrating sample magnetometer (VSM). For both the Fe3+/Co2+ ratios, the XRD results indicat the formation of well crystallized cubic spinel cobalt ferrite phase for the precursors annealed at 600Co up to 1000Co. However a second rhombohedral hematite phase whose content varies respectively from 3% and 15% was formed as the Fe3+/Co2+ varied from 2 to 2.75 at Ta=800 and 1000Co. The crystallite size (Dβ) as determined applying the win-fit program was found also to decrease from 54.5 to 48.6nm accompanied by an increase of the root mean square strain < eg>. Using Rditveld analysis no effect on the value of the lattice parameter (a) was detected. The FESEM micrographs reveal the formation of highly agglomerated particles for Fe3+/Co2+ =2.75 and Ta =1000Co. The FTIR analysis confirm the formation of the spinel structure phase for both Fe3+/Co2+ ratios at 1000Co, however the absorption bands shift to higher frequencies for Fe3+/Co2+ =2.75. Other bands at 1663 and 3472cm-1 ascribed to free or absorbed water molecules were also detected for this ratio. The Fe3+/Co2+ molar ratio was found to have a significant effect on the magnetic properties of the produced cobalt ferrite. The calculated magnetic parameters: the saturation magnetization (MS= 71.219emu/g), the coricivity (HC= 1443.8Oe) and the remanence ratio (Mr/MS= 0.405) were recorded to decrease as the Fe3+/Co2+ increases except for the curie temperature (TC) which increase from 405 to 410Co.
Nahed Makram Eyssa,
Hanan Hassan Hantour,
Kamilia Sdeek Abdo,
Phase Formation and Crystallinity-Dependent Magnetic Parameters of Co1-xFe2+xO4 Nanoparticals, American Journal of Physics and Applications.
Vol. 3, No. 2,
2015, pp. 33-38.
doi: 10.11648/j.ajpa.20150302.14
[1]
Y. Kitamoto, S. Kantake, F. Shirasaki, M. Abe, M. Naoe, J. Appl. Phys. 85(1999)4708.
[2]
M. H. Sousa, F. A. Tourinho, J. Phys. Chem., B 105 (2001) 1168.
[3]
Dennis E. Speliotis, J. Magn. Magn. Mater. 193 (1999) 29.
[4]
Z. Ali, A. Atta, Y. Abbas, K. Sedeek, A. Adam, E. Abdetwab, J. thin solid films, xx (2014) xx
[5]
P. C. Dorsey, P. Lubitz, K. B. Chrisey, J. S. Horwitz, J. Appl. Phys. 79 (1996) 6338.
[6]
J. G. Lee, J. Y. Park, Y. J. Oh, C. S. Kimat Nanotech, Nanofabrication Facility at UC, Santa Barbara, 2003, pp. 106–107 , J. Appl. Phys. 84 (1998) 2801.
[7]
A. K. Giri, K. Pellerin, W. Pongsaksawad, M. Sorescu, S. Majetich, IEEE Trans. Magn. 36 (2000) 3029.
[8]
A. K. Giri, E. M. Kirkpatrick, P. Moongkhamklang, S. A. Majetich, Appl. Phys. Lett. 80 (2002) 2341.
[9]
M. Grigorova, H. J. Blythe, V. Blaskov, V. Rusanov, V. Petkov, V. Masheva, D. Nihtianova, Ll. M. Martinez, J. S. Mu˜noz, M. Mikhov, J. Magn. Magn. Mater. 183 (1998) 163.
[10]
J. L. Dorman, D. Fiorani (Eds. ), Magnetic Properties of Fine Particles, North-Holland, Amesterdam, 1997.
[11]
C. Inui, Y. Tsuge, H. Kura, S. Fujihara, S. Shiratori, T. Sato, Thin Solid Films 516 (2008) 2454.
[12]
W. Zhao, J. Gu, L. Zhang, H. Chen, J. Shi, J. Am. Chem. Soc. 127 (2005) 8916.
[13]
J. M. Perez, F. J. Simeone, A. Tsourkas, L. Josephson, R. Weissleder, Nano Lett. 4 (2004) 119.
[14]
J. G. Na, T. D. Lee, S. J. Park, IEEE Trans. Magn. 28 (1992) 2433.
[15]
C. C. H. Lo, A. P. Ring, J. E. Snyder, D. C. Jiles, IEEE Trans. Magn. 41(2005) 3676.
[16]
Y. Köseoğlu, M. Bay, M. Tan, A. Baykal, H. Sözeri, R. Topkaya, N. Akdoğan, J. Nanopart. Res. 13 (2011) 2235.
[17]
N. Kasapoğlu, A. Baykal, Y. Köseoğlu, M. S. Toprak, Scripta Mater. 57(2007) 441.
[18]
H. Yang, X. Zhang, A. Tang, G. Qiu, Chem. Lett. 33 (7) (2004) 826.
[19]
R. Honrada, R. Seshadri, A. Risbud, NNUN REU Program at nanotech, nanofabrication facility at UC, Santa Barbara, 2003, pp. 106-107.
[20]
C. H. Chia, S. Zakaria, M. Yusoff, S. C. Goh, C. Y. Hawa, Sh. Ahmadi, N. M. Huang, H. N. Lim, J. Ceramics International 36 (2010) 605.
[21]
Hamid Emadi, Ali Nemati Kharat, J. Industrial and Engineering Chemistry, xx (2014) xx.
[22]
Sheenu Jauhar, SonalSinghal, Ceramics International 40(2014)11845.
[23]
Yüksle Köseoğlu. Furkan Alan, Muhammed Tan, Resul Yilgin, Mustafa öztürk, J. Ceramics International 38 (2012) 3625.
[24]
A. M. Al-Saie, M. Bououdina, A. Jaffar, S. Arekat, John M. Melnyczuk, Ynhi T. Thai, Christopher S. Brazel, J. Alloys and compounds 5095 (2011) 5393.
[25]
R. M. Mohamed, M. M. Rashad, F. A. Haraz, W. Sigmund, J. Magnetism and Magnetic Materials, 322 (2010)2058.
[26]
Ovidiu Caltun, Ioan Dumitru, Marcel Feder, Nicoleta Lupu, Haria Chiriac, J. Magn. Magn. Mater. 320 (2008) e869.
[27]
P. Scardi, L. Lutterotti, and P. Masiterlli. Powder Diff. , 9(3) (1994)180.
[28]
Karimat El-Sayed, Z. K. Heiba, K. Sedeek, H. H. Hantour, J. Alloys and compounds, 530 (2012) 102.
[29]
Karimat El-Sayed, K. Sedeek, Z. K. Heiba, H. H. Hantour, J. Materials research bulletin, 48 (2013) 2383.
[30]
R. D Waldron, Phys. Rev. 99(1955) 1727.
[31]
Z. Karimi, Y. Mohammadifar, H. Shokrollahi , Sh. KhamenehAsl , Gh. Yousefi, L. Karimi J. Magn. Magn. Mater, 361(2014)150.
[32]
I. Sharifi, H. Shokrollahi, J. Magn. Magn. Mater, 324(2012)2397.
[33]
M. M. Rashad, R. M. Mohamed, H. El-Shall, J. Mater. Process. Technol. 198 (2008) 139.
[34]
L. BenTahar, M. Artus, S. Ammar, L. S. Smiri, F. Herbst, M. -J. Vaulay, V. Richard, J. -M. Gren _eche, F. Villain, F. Fie´ vet, J. Magn. Magn. Mater. 320(2008)3242.
[35]
D. H. Kim, D. E. Nikles, D. T. Johnson, C. S. Brazel, J. Magn. Magn. Mater. 320 (2008) 2390.
[36]
M. Faraji, Y. Yamini, M. Rezaee, J. Iran. Chem. Soc. 7 (2010)1.