Study of Decoupling Effects on SUSY Higgs Sector
American Journal of Physics and Applications
Volume 3, Issue 2, March 2015, Pages: 57-59
Received: Feb. 15, 2015; Accepted: Mar. 4, 2015; Published: Mar. 16, 2015
Views 2425      Downloads 113
Author
Partha Pratim Pal, Bolpur Sikshaniketan Ashram Vidyalaya, West Bengal, Bolpur, Birbhum, India
Article Tools
Follow on us
Abstract
The most likely scenario in the light of Higgs discovery is the decoupling limit in the MSSM Higgs sector. The decoupling limit in MSSM occurs when the pseudoscalar mass is large (i.e.mA» mZ ), then the CP-even (H0), CP-odd (A0) and charged (H±) Higgs are mass degenerate and the lightest CP-even Higgs boson (h) mimics the signature of the SM Higgs boson. In the decoupling limit of large mA the couplings of the lightest CP-even MSSM Higgs boson h to pairs of SM particles approach their SM values. Moreover, in the decoupling limit there exists a value of tanβ which is independent of the value of mA . Recently a Higgs like particle is reported to be discovered at CMS and ATLAS experiments at CERN LHC with a mass of about 125 GeV. This estimate is only valid in the so called decoupling limit where all non-standard Higgs bosons are significantly heavier than the Z gauge boson.
Keywords
MSSM, Decoupling Limit, Lightest CP-Even Higgs Boson (h), LHC
To cite this article
Partha Pratim Pal, Study of Decoupling Effects on SUSY Higgs Sector, American Journal of Physics and Applications. Vol. 3, No. 2, 2015, pp. 57-59. doi: 10.11648/j.ajpa.20150302.16
References
[1]
Glashow S L, Nucl.Phys.22, 1961,579; Salam A and Ward J C, Phys. Lett. 13, 1964, 168; Weinberg S, Phys. Rev. Lett. 19, 1967, 1264.
[2]
Veltman M, Acta Phys. Polon. B12 (1981) 437; Witten E, Nucl. Phys.B 188 (1981) 513 and Phys.Lett.B 105 (1981) 267.
[3]
Gildener E and Weinberg S, Phys. Rev.D 13, 3333 (1976); Susskind L, Phys. Rev. D 20 (1979) 2619; Weinberg S, Phys.Lett. B 82 (1979) 387 ;, t Hoof G, in Recent developments in Gauge Theories, Proceedings of the NATO Advanced Study Institute, Cargese, 1979,eds. , t Hooft G et. al. (Plenum Press, NY, 1980).
[4]
Gunion J F, Haber H E , Kane G and Dawson S, The Higgs Hunters’ Guide (Addition-Weslay, Reading, MA, 1990); , Haber H E and Kane G , Phys.Rep.117, 75 (1985).and references therein for SM; Introduction to supersymmetry (http://arxiv.org/pdf/hep-th/9612114). By Lykken J D,1996 ; An introduction to supersymmetry (http://arxiv.org/pdf/hep-ph/9611409). By DreesM , 1996 ; A Supersymmetry Primer (http://arxiv.org/pdf/hep-ph/9709356) By Martin S , 1999; Introduction to Supersymmetry (http://arxiv.org/pdf/hep-ph/0101055) By Bilal A, 2001; An introduction to Global supersymmetry. (http://www.physics.uc.edu/~argyres/661/susy2001.pdf) By Philip Arygres, 2001.
[5]
E. Witten, Nucl. Phys. B188 (1981) 513; ibid Nucl. Phys. B202 (1982) 253; N. Sakai, Z. Phys. C11 (1981) 153; S. Dimopoulos and H. Georgi, Nucl. Phys. B193 (1981) 150; R.K. Kaul and P. Majumdar, Nucl. Phys. B199 (1982) 36.
[6]
N.Cabibbo, L.Maiani, G.Parisi, and R.Petronzio, Nucl.Phys.B 158, 295 (1979).
[7]
M.Sher, Phys.Rep.179,273 (1989); Phys.Lett.B 317,159 (1993); Phys.Lett.B 331,448(1994); J.A.Casas, J.R.Espinosa, and M.Quiros, Phys.Lett.B 342,171 (1995).
[8]
M. Lindner, Z.Phys. C31,295(1986) ; M.Sher, Phys.Rep. 179,273 (1989).
[9]
H.E.Haber and R. Hempfling, Phys.Rev.Lett.66,1815 (1991); Phys.Rev.D 48, 4280 (1993).
[10]
B.Ghosh and S.Chakraborty 2001 Ind.J.Phys. 75A(6) 651; B.Ghosh and S.Chakraborty 2001 Ind. Jour.Pure and Applied Physics 39 481.
[11]
S.Chakraborty and P.P.Pal 2010 Journal of Assam Science Society 51 No 1 and 2.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186