Atomic Data and Laser Transitions in as - Like Gallium
American Journal of Physics and Applications
Volume 4, Issue 1, January 2016, Pages: 12-19
Received: Jan. 20, 2016; Accepted: Feb. 1, 2016; Published: Feb. 23, 2016
Views 3358      Downloads 55
Authors
Amal Ibrahim Refaie, Physics Department, Faculty of Science, Cairo University, Cairo, Egypt
Mohammed Nour El-Din, Physics Department, Faculty of Science, Benha University, Benha, Egypt
Lamia Mohammed Ahmed, Physics Department, Faculty of Science, Benha University, Benha, Egypt
Sami Allam, Physics Department, Faculty of Science, Cairo University, Cairo, Egypt
Article Tools
Follow on us
Abstract
Fine structure calculations of the energy levels, the wavelengths, the oscillator strengths, log gf and the transition probabilities for transitions among the terms belonging to 1s2 2s2 2p6 3s2 3p6 3d104s2ns, n=5-6, 1s2 2s2 2p6 3s2 3p6 3d104s2np, n=4-6, 1s2 2s2 2p6 3s2 3p6 3d104s2nd, n=4-6 and1s2 2s2 2p6 3s2 3p6 3d104s2nf, n=4-6 configurations of As (III) have been calculated using configurations interaction Cowan atomic structure code. Our calculated values for the above mentioned quantities have been compared with the corresponding experimental data and other theoretical calculations where a satisfactory agreement is found. We also report on some unpublished values for energy levels, oscillator strengths and transition probabilities for As like gallium. These atomic data are taken as the basis for studying laser transitions between levels of As(III). Excitation rate coefficients of As like gallium are calculated using the analytical formulas of Vriens and Smeets (1980) and with considering using the collisional radiative model code CRMO of Allam (2006). A simple modification to these formulas has been included by introducing effective quantum numbers. The energy values, the radiative data and rate coefficients are then used to calculate the population densities by solving the coupled rate equations. Among these calculations positive gain coefficients are found at three selected values of electron temperature, namely 7.087 eV, 14.147 eV and 21.261 eV which are displayed as a function of the electron impact density.
Keywords
Energy Levels, the Average Center of Mass Energy (Eav), the Spin-Orbit Interaction (), Nist, the Oscillator Strength (ƒ), Rate Coefficients, Level Population, Maximum Gain Coefficient(αmax)
To cite this article
Amal Ibrahim Refaie, Mohammed Nour El-Din, Lamia Mohammed Ahmed, Sami Allam, Atomic Data and Laser Transitions in as - Like Gallium, American Journal of Physics and Applications. Vol. 4, No. 1, 2016, pp. 12-19. doi: 10.11648/j.ajpa.20160401.13
Copyright
Copyright © 2016 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
D. Iablonskyi, K. Jänkälä, S. Urpelainen and M. Huttula, J. Phys. B: At. Mol. Opt. Phys. 46, 175001 (2013).
[2]
Yu. M. Smirnov, Opt. Spectrosc.110, 1–8 (2011).
[3]
J. E. Sansonetti, J. Phys. Chem. Ref. Data 41, 013102 (2012).
[4]
J. E. Sansonetti, J. Phys. Chem. Ref. Data 35, 301 (2006).
[5]
J. E. Sansonetti and W. C. Martin, J. Phys. Chem. Ref. Data 34, 1559 (2005).
[6]
E. Biémont, P. Quinet, J. Quant. spectrosc. Radiat. Transfer Vol. 44, No. 2, pp. 233-244, 1990.
[7]
K. Aashamar, T. M. Luke and J. D. Talman, J. Phys. B: At. Mol. Phys. 16 (1983) 2695-2708.
[8]
R. Marcinek and J. Migdalek, J. Phys. B: At. Mol. Opt. Phys. 26 (1993) 1403 1414.
[9]
F. Hu, J. Yag, C. Wang, L. Jing, S. Chen, G. Jiang, H. Liu, L. Hao; Phys. Rev. A 84, 042506 (2011).
[10]
Reader, J., Acquista, N. and Goldsmith, S., J. Opt. Soc. Am. B 3, 874 (1986).
[11]
P. S. Ganas, Astron. Astrophys., Suppl. Ser. 143, 491 (2000).
[12]
E. B. Saloman, J. Phys. Chem. Ref. Data 36, 215 (2007).
[13]
Feldman U, Bhatia A. K, Suckewer S; J. Appl. Phys. 5, 1983. p. 54.
[14]
Feldman U, Doschek G. A, and Seely J. F, Bhatia A. K; J. Appl. Phys. 58, 1985. p. 2909-2915.
[15]
Feldman U, Seely J. F and Doschek G. A; J. de Physique, C6, 1986. p. 187.
[16]
Feldman U, Seely J. F and Doschek G. A, Bhatia A. K; J. Appl. Phys. 59, 1986. p. 3953.
[17]
Feldman U, Seely J. F and Bhatia A. K; J. Appl. Phys. 56, 1984. p. 2475.
[18]
Vriens L and Smeets A. H. M; Phys. Rev. A 22, 1980. p. 3.
[19]
Fowles R. Introduction to modern optics. Holt, Rinehart, and Winston, New York. 1968.
[20]
http://www.tcd.ie/Physics/People/Cormac.McGuinness/Cowan/.
[21]
Cowan R. D, The theory of atomic structure and spectra, University of California Press, Berkeley - Los Angeles- London, 1981.
[22]
Cowan R. D, J. Opt. Soc. Am. 58, 1968. p. 808.
[23]
Sobelman “Introduction to the Theory of Atomic Spectra”, international series of monographs in Natural Philosophy, Pergamon Press, Vol. 40, (1979).
[24]
Alan Corney “Atomic And Laser Spectroscopy” Oxford Univesity Press (1977).
[25]
Allam S. H "CRMO-Collisional Radiative Model" computer code, Private communication.
[26]
Silfvast W. T, Green J. M, and Wood O. R. Phys. Rev. Lett. 35, 1975. p. 435.
[27]
Fowles R. Introduction to modern optics. Holt, Rinehart, and Winston, New York. 1968.
[28]
J. C. Slater, “Quantum Theory of Atomic Structure”, Vols. I and II, McGraw-Hill, New York, (1960).
[29]
D. E. Kellcher, W. C. Martin., W. L. Wiese, J. Suger, J. R Fuher, K. Olsen, A. Musgrove, P. J. Mohr, J. Reader and G. R. Dalton, Phys. Scr. 83 (1999)158, http://physics.nist.gov/cgi-bin/atdata/main_asd.
[30]
John J. Brehm and William J. Mullin, "introduction to the structure of Matter", John Wiley & Sons, 1989.
[31]
Mahmoud Ahmad, Ahmed Abou El-Maaref, Essam Abdel-Wahab1, Sami Allam, American Journal of Optics and Photonics. Vol. 3, No. 1, 2015, pp. 17-23.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186