Hartree-Fock Equation for a Non-neutral Plasma of Spin Zero Ions in a Paul Trap
American Journal of Physics and Applications
Volume 4, Issue 3, May 2016, Pages: 71-77
Received: Apr. 11, 2016; Accepted: Apr. 25, 2016; Published: May 11, 2016
Views 3009      Downloads 104
Author
Fernand Tshizanga Mpinga, Department of Mechanics, Superior Institute of Applied Techniques, Kinshasa, Democratic Republic of Congo
Article Tools
Follow on us
Abstract
The imperceptible identical particle systems such as electron gas in metals have been the concern of experimental and theoretical studies mostly aiming to understand the properties of these systems. Hartree-Fock equation of electron gas, a fermion quantum plasma, has been established by the method of “equation of motion”, and by using Dirac field. The goal of this paper is to establish regarding the same method, the Hartree-Fock equation for a non-neutral plasma of identical ions of spin zero at high density and low temperature in a Paul trap, by using the complex scalar field.
Keywords
Identical Ions, Spin Zero, Paul Trap, Non-neutral Plasma, Microscopic Theory, Field Operator, Fock Space, Hamiltonian Operator
To cite this article
Fernand Tshizanga Mpinga, Hartree-Fock Equation for a Non-neutral Plasma of Spin Zero Ions in a Paul Trap, American Journal of Physics and Applications. Vol. 4, No. 3, 2016, pp. 71-77. doi: 10.11648/j.ajpa.20160403.11
Copyright
Copyright © 2016 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
S. Removille., Vers une mémoire quantique dans des ions piégés. Thèse de doctorat, Université Paris. Diderot (Paris 7) 2009.
[2]
C. Kittel. Théorie Quantique du Solide. (Dunod, Paris, 1967).
[3]
P. Nozières and D. Pines. The theory of quantum liquids. 3th edition (Perseus books, Cambridge, 1999).
[4]
D. Comparat (2008). Expériences avec des atomes de Rydberg et des molécules ultrafroids. Mémoire d’Habilitation à Diriger des Recherches.
[5]
B.M. Caradoc-Davies. Vortex Dynamics in Bose-Einstein Condensates, These, University of Otago, 200 pages (2000).
[6]
F. M Tshizanga, P. M. Badibanga and B. B. Ntampaka (2014), An investigation into the Parameters of Quantum Degeneration of an Ultra Cold Non-Neutre Plasma of identical Ions of Zero Spin in a Paul Trap. International Journal of Measurement Technologies and Instrumentation Engineering, 4(1), 51-70. January-March 2014
[7]
F. Mandl, Introduction to Quantum Field Theory. 2th edition (Interscience Publishers INC., New York. 1964)
[8]
S. Froit (2006), Introduction à la théorie des champs phénoménologique, INRIA.
[9]
Govaerts, J. (1995)., L’interaction électrofaible: une fenêtre sur la physique au-delà du Modèle Standard, Paru dans les Actes de l’Ecole Internationale Joliot-Curie de Physique Nucléaire”, Maubuisson (France) (pp. 333-416).
[10]
S. Weinberg. The quantum theory of fields. Volume 1 5th edition (Cambridge university press, volume I and II. New York, 2000)
[11]
K. Ingersent, (2003), Second Quantization: Creation and Annihilation Operators, PHY 6646.
[12]
A. S. Davydov. Quantum mechanics. (Pergamon Press, New York, 1965)
[13]
J-P. Derendinger. Théorie quantique des champs. (Presses polytechniques et universitaires romandes, 2001)
[14]
F. Dalfovo, S. Giorgini, L. P. Pitaevskii and S. Stringari (1999), Theory of Bose-Einstein condensation in trapped gases. Reviews of Modern Physics, Vol. 71, No. 3, April, pp 463-512
[15]
J. S. Bell, Théorie Quantique des Champs Expérimentale. (CERN 77-18, Paris, 1977).
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186