Gamma Ray Irradiation Effects on the Mechanical and Chemical Properties of CuO–Bi2O3–SiO2 Glasses
American Journal of Physics and Applications
Volume 4, Issue 6, November 2016, Pages: 140-144
Received: Oct. 31, 2016; Accepted: Dec. 1, 2016; Published: Dec. 17, 2016
Views 3134      Downloads 72
H. A. Saudi, Department of Physics, Faculty of Science (Girls' Branch), Al-Azhar University, Nasr City, Egypt
Article Tools
Follow on us
The effect of gamma radiation on the mechanical and chemical properties of x CuO, (70-x) Bi2O3, 20SiO2,10 Na2O, where 0 ≤ x ≤ 30 weight % were carefully studied in order to obtain information about the changes that appear in the structure of the glass matrix with the doping of copper ions. The glass matrix was fabricated by melt-quenching technique. The results showed that, the glass system has good durability, density and mechanical properties with increasing CuO content at the expense of Bi2O3, and that the effect of irradiation with gamma dose is very small. UV-VIS absorption spectra for all glasses have a single asymmetric band, which corresponds to a BiO3→BiO6 transition of the Cu2+ ions in octahedral symmetry with an elongated tetragonal distortion. These measurements indicate the presence of Cu2+ ions in the glasses. Furthermore, it has good water resistance ability with increasing copper oxide. So, it can be used as a container for keeping radioactive waste and radioactive sources.
Bismosilicate Glasses, Hardness, Durability
To cite this article
H. A. Saudi, Gamma Ray Irradiation Effects on the Mechanical and Chemical Properties of CuO–Bi2O3–SiO2 Glasses, American Journal of Physics and Applications. Vol. 4, No. 6, 2016, pp. 140-144. doi: 10.11648/j.ajpa.20160406.11
Copyright © 2016 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License ( which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Y. B. Dimitriev, in Proc. Inter. Cong. Glass, Invited Papers, Edinburgh, Scotland, vol. 1 p. 225, (2001).
L. Baia, R. Stefan, W. Kiefer, J. Popp, S. I. Simon, J. Non-Cryst. Solids 303, 379 (2002).
S. Sindhu, S. Sanghi, A. Agarwal, V. Seth, N. Kishore, Mater. Chem. Phys. 90, 83 (2005).
F. H. ElBatal, Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 254, 243 (2007).
F. H. ElBatal, S. Y. Marzouk, N. Nada, S. M. Desouky, Physica B 391, 88 (2007).
Heba A. Saudy, Sawsan El Mosallamy, Samir U. El Kameesy, Nashwa Sheta, Ahmed G. Mostafa, Hanaa A. Sallam, World Journal of Condensed Matter Physics, 3, 9-13 (2013). (
J. Fu, H. Yatsuda, Phys. Chem. Glasses 36 (1995) 211.
L. Montagne, G. Palavit, G. Mairesse, M. Draoui, K. Aomari, M. Saidi Idrissi, Phys. Chem. Glasses 38 (1997) 15.
Werner Vogel, Glass Chemistry, Second Edition Springer-Verlag, Berlin, 1994.
I. Ardelean, solid state common 27,697, (1978).
F. M. Ezz Eldin, N. A. El-Alaily, H. A. Elbatal, J. Radio-Anal. Nucl. Chem. 63 (2) (1992) 267.
H. A. Saudi, Applied Mathematics and Physics, Vol. 1, No. 4, 143-146 (2013). ( © Science and Education Publishing).
R. Bajpai and S. C. Datt, Indian J pure Appl. Phys, 24 (1986).
N. A. El-Alaily, W. M. Abdallah, B. A. Sabrah, A. I. Saad, Silicon (2017) 9: 117–130 DOI 10.1007/s12633-015-9330-7.
E. J. Friebele, Radiation effects, in: D. R. Uhlmann, N. J. Kreidl (Eds.), Optical Properties (2012).
A. Bishay, J. Non-Cryst. Solids 3 (1970) 54–114.
M. A. Marzouk et al. / Journal of Non-Crystalline Solids 387 (2014) 155–160.
LI Xiu-ying, YANG Hua-ming, REN Yu-xi, J. Cent. South Univ. (2013) 20: 44−49
D. S. McClure, Solid State Physics, Vol. 9, Ed. F. Seitz, D. Turnbull, Academic Press, New York, 1959, p. 195.
B. Karthikeyan, S. Mohan, Matt. Lett. 57, 3789 (2003).
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
Tel: (001)347-983-5186