Oleic Acid Produces Motor Incoordination and Hypoactivity in Infant Wistar Rats Through GABAA Receptors
American Journal of Psychiatry and Neuroscience
Volume 4, Issue 2, March 2016, Pages: 18-25
Received: Mar. 8, 2016; Accepted: Mar. 18, 2016; Published: Mar. 31, 2016
Views 3828      Downloads 107
Authors
Gabriel Guillén-Ruiz, Neuropharmacology Section, Institute of Neuroethology, University of Veracruz, Xalapa, Veracruz, México
Blandina Bernal-Morales, Neuropharmacology Section, Institute of Neuroethology, University of Veracruz, Xalapa, Veracruz, México
Carlos M. Contreras, Neuropharmacology Section, Institute of Neuroethology, University of Veracruz, Xalapa, Veracruz, México; Peripheral Unit, Biomedical Research Institute, National Autonomous University of México, Xalapa, Veracruz, México
Jonathan Cueto-Escobedo, Neuropharmacology Section, Institute of Neuroethology, University of Veracruz, Xalapa, Veracruz, México
Juan Francisco Rodríguez-Landa, Neuropharmacology Section, Institute of Neuroethology, University of Veracruz, Xalapa, Veracruz, México
Article Tools
Follow on us
Abstract
A mixture of eight fatty acids (linoleic, oleic, palmitic, stearic, myristic, elaidic, lauric, and palmitoleic acids) at similar concentrations that have been identified in human amniotic fluid exerts anxiolytic-like effects similar to diazepam in adult Wistar rats through actions at -aminobutyric acid-A (GABAA) receptors, but unknown is whether any of these fatty acids exerts a predominant action over the others in infant rats. Of these fatty acids, some actions of oleic acid have already been identified, and it is one of the most abundant in amniotic fluid. Therefore, the aim of this study was to explore the effect of oleic acid on anxiety-like behavior and motoric activity in infant rats. To explore sedative actions, 28-day-old Wistar rats received 80-320 µg oleic acid or a sedative dose of diazepam (5 mg/kg). In a dose-response study, other groups of rats were injected with 10-80 µg oleic acid or 1 mg/kg diazepam. In an interaction study, rats that received oleic acid were pretreated with the GABAA receptor antagonists picrotoxin or flumazenil to explore the participation of this receptor in the effects of oleic acid on behavior in the elevated plus maze, rotarod test, and open field test. Oleic acid produced sedative effects but did not exert any anxiolytic-like actions. Hypoactivity and motor incoordination that were induced by oleic acid were blocked by flumazenil and picrotoxin. In conclusion, oleic acid reduced locomotor activity and motor incoordination through actions at the GABAA receptor.
Keywords
Hypoactivity, Motor Incoordination, Fatty Acids, Oleic Acid, Anxiety
To cite this article
Gabriel Guillén-Ruiz, Blandina Bernal-Morales, Carlos M. Contreras, Jonathan Cueto-Escobedo, Juan Francisco Rodríguez-Landa, Oleic Acid Produces Motor Incoordination and Hypoactivity in Infant Wistar Rats Through GABAA Receptors, American Journal of Psychiatry and Neuroscience. Vol. 4, No. 2, 2016, pp. 18-25. doi: 10.11648/j.ajpn.20160402.11
Copyright
Copyright © 2016 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
R. Nowak, P. Poindron. “From birth to colostrum: early steps leading to lamb survival”. Reprod Nutr Dev, 46(4): 431-446, 2006.
[2]
S. Kojima, J. R. Alberts. “Warmth from skin-to-skin contact with mother is essential for the acquisition of filial huddling preference in preweanling rats”. Dev Psychobiol, 53: 813-827, 2011.
[3]
B. Schaal, L. Marlier. “Maternal and paternal perception of individual odor signatures in human amniotic fluid: potential role in early bonding?” Biol Neonate, 74: 266-273, 1998.
[4]
C. M. Contreras, A. G. Gutiérrez-García, R. Mendoza-López, J. F. Rodríguez-Landa, B. Bernal-Morales, C. Díaz-Marte. “Amniotic fluid elicits appetitive responses in human newborns: fatty acids and appetitive responses”. Dev Psychobiol, 55(3): 221-231, 2013.
[5]
C. M. Contreras, J. F. Rodríguez-Landa, A. G. Gutiérrez-García, M. R. Mendoza-López, R.I. García-Ríos, J. Cueto-Escobedo. “Anxiolytic-like effects of human amniotic fluid and its fatty acids in Wistar rats”. Behav Pharmacol, 22(7): 655-662, 2011.
[6]
R. I. García-Ríos, J. F. Rodríguez-Landa, C. M. Contreras. “Anxiolytic-like actions of fatty acids identified in human amniotic fluid”. Sci World J, 2013: 823289, 2013.
[7]
J. F. Rodríguez-Landa, R. I. García-Ríos, J. Cueto-Escobedo, B. Bernal-Morales, C. M. Contreras. “Participation of GABAA chloride channels in the anxiolytic-like effects of a fatty acid mixture”. Biomed Res Int, 2013: 121794, 2013.
[8]
S. J. Enna. “The GABA receptors”. In: The GABA Receptors. S. J. Enna, H. Möhler (ed). Totowa: Humana Press, pp. 1-22, 2007.
[9]
G. A. R. Johnston. “GABAA antagonists”. Semin Neuroci, 3(3): 205-210, 1991.
[10]
M. Nielsen, M. R. Witt, H. Thøgersen. “[3H] Diazepam specific binding to rat cortex in vitro is enhanced by oleic, arachidonic and docosahexenoic acid isolated from pig brain”. Eur J Pharmacol, 146: 349-353, 1988.
[11]
J. A. Koenig, I. L. Martin. “Effect of free fatty acids on GABAA receptor ligand binding”. Biochem Pharmacol, 44(1): 11-15, 1992.
[12]
T. C. Hwang, S. E. Guggino, W. B. Guggino. “Direct modulation of secretory chloride channels by arachidonic and other cis unsaturated fatty acids”. Proc Natl Acad Sci U S A, 87: 5706-5709, 1990.
[13]
F. Takenaga, K. Matsuyama, S. Abe, Y. Torii, S. Itoh. “Lipid and fatty acid composition of mesocarp and seed of avocado fruits harvested at northern range in Japan”. J Oleo Sci, 57(11): 591-597, 2008.
[14]
M. Fazzari, A. Trostchansky, F. J. Schopfer, S. R. Salvatore, B. Sánchez-Calvo, D. Vitturi, et al. “Olives and olive oil are sources of electrophilic fatty acid nitroalkenes”. PLoS One, 9(1): e84884, 2014.
[15]
V. Uylaşer, G. Yildiz. “The historical development and nutritional importance of olive and olive oil constituted an important part of the Mediterranean diet”. Crit Rev Food Sci Nutr, 54(8): 1092-1101, 2014.
[16]
C. Razquin, J. A. Martínez, M. A. Martínez-González, M. T. Mitjavila, R. Estruch, A. Marti. “A 3 years follow-up of a Mediterranean diet rich in virgin olive oil is associated with high plasma antioxidant capacity and reduced body weight gain”. Eur J Clin Nutr, 63(12): 1387-1393, 2009.
[17]
J. Mayneris-Perxachs, A. Sala-Vila, M. Chisaguano, A. I. Castellote, R. Estruch, M. I Covas, et al. “Effects of 1-year intervention with a Mediterranean diet on plasma fatty acid composition and metabolic syndrome in a population at high cardiovascular risk”. PLoS One, 9(3): e85202, 2014.
[18]
C. Carrillo, M. M. Cavia, S. Alonso-Torre. “Role of oleic acid in immune system: mechanism of action: a review”. Nutr Hosp, 27(4): 978-990, 2012.
[19]
R. W. Owen, A. Giacosa, W. E. Hull, R. Haubner, G. Würtele, B. Spiegelhalder, H. Bartsch. “Olive-oil consumption and health: the possible role of antioxidants”. Lancet Oncol, 1: 107-112, 2000.
[20]
C. Carrillo, M. M. Cavia, S. Alonso-Torre. “Antitumor effect of oleic acid: mechanisms of action: a review”. Nutr Hosp, 27(6): 1860-1865, 2012.
[21]
C. López-Rubalcava, A. Fernández-Guasti, R. Urba-Holmgren. “Age-dependent differences in the rat's conditioned defensive burying behavior: effect of 5-HT1A compounds”. Dev Psychobiol, 29(2):157-169, 1996.
[22]
J. A. Vivian, H. M. Barros, A. Manitiu, K. A. Miczek. “Ultrasonic vocalizations in rat pups: modulation at the -aminobutyric acid A receptor complex and the neurosteroid recognition site”. J Pharmacol Exp Ther, 282(1): 318-325, 1997.
[23]
National Research Council. Guide for the care and use of laboratory animals. Washington DC: National Academy Press, 1985.
[24]
NOM-062-ZOO-1999. Especificaciones Técnicas para la Producción, Cuidado y Uso de los Animales de Laboratorio. Secretaría de Agricultura Ganadería Desarrollo Rural, Pesca y Alimentación, 1999.
[25]
K. M. Wozniak, J. J. Vornov, B. M. Mistry, Y. Wu, R. Rais, B. S. Slusher. “Gastrointestinal delivery of propofol from fospropofol: its bioavailability and activity in rodents and human volunteers”. J Transl Med, 13: 170, 2015.
[26]
C. M. Contreras, J. F. Rodríguez-Landa, R. I. García-Ríos, J. Cueto-Escobedo, G. Guillén-Ruiz, B. Bernal-Morales. “Myristic acid produces anxiolytic-like effects in Wistar rats in the elevated plus maze”. Biomed Res Int, 2014: 492141, 2014.
[27]
A. A. Walf, C.A. Frye. “The use of the elevated plus maze as an assay of anxiety-related behavior in rodents”. Nat Protoc, 2(2): 322-328, 2007.
[28]
H. Cohen, M. A. Matar, J. Zohar. “Animal models of post-traumatic stress disorder”. Curr Protoc Neurosci, Chapter 9, Unit 9.45, 2013.
[29]
K. Hefner, A. Holmes. “Ontogeny of fear-, anxiety- and depression-related behavior across adolescence in C57BL/6J mice”. Behav Brain Res, 176(2): 210-215, 2007.
[30]
D. A. Lynn, G. R. Brown. “The ontogeny of anxiety-like behavior in rats from adolescence to adulthood”. Dev Psychobiol, 52(8): 731-739, 2010.
[31]
J. Cueto-Escobedo, C. M. Contreras, B. Bernal-Morales, G. Guillén-Ruiz, J. F. Rodríguez-Landa. “Defensive burying test in postweaning rats: utility of a small round chamber”. Behav Pharmacol, 24: 693-698, 2013.
[32]
S. Pellow, P. Chopin, S. E. File, M. Briley. “Validation of open: closed arm entries in the elevated plus-maze as a measure of anxiety in the rat”. J Neurosci Methods, 14: 149-167, 1985.
[33]
A. P. Cruz, F. Frei, F. G. Graeff. “Ethopharmacological analysis of rat behavior on the elevated plus-maze”. Pharmacol Biochem Behav, 49: 171-176, 1994.
[34]
J. T. Imhof, Z. M. Coelho, M. L. Schmitt, G. S. Morato, A. P. Carobrez. “Influence of gender and age on performance of rats in the elevated plus maze apparatus”. Behav Brain Res, 56(2): 177-180, 1993.
[35]
R. M. McKernan, T. W. Rosahl, D. S. Reynolds, C. Sur, K. A. Wafford, J.R. Atack, et al. “Sedative but not anxiolytic properties of benzodiazepines are mediated by the GABAA receptor 1 subtype”. Nat Neurosci, 3(6): 587-592, 2000.
[36]
M. L. Moon, J. J. Joesting, M .A. Lawson, G. S. Chiu, N. A. Blevins, K. A. Kwakwa, G. G. Freund. “The saturated fatty acid, palmitic acid, induces anxiety-like behavior in mice”. Metabolism, 63(9): 1131-1140, 2014.
[37]
I. Fedorova, A. Hashimoto, R. A. Fecik, M. P. Hedrick, L. O. Hanus, D. L. Boger, et al. “Behavioral evidence for the interaction of oleamide with multiple neurotransmitter systems”. J Pharmacol Exp Ther, 299(1): 332-342, 2001.
[38]
M. A. Akanmu, S. O. Odeosum, O. R. Ilesanmi. “Neuropharmacological effects of oleamide in male and female mice”. Behav Brain Res, 182(1): 88-94, 2007.
[39]
X. Y. Wei, J. Y. Yang, Y. X. Dong, C. F. Wu. “Anxiolytic-like effects of oleamide in grouped-housed and socially isolated mice”. Prog Neuropsychopharmacol Biol Psychiatry, 31(6): 1189-1195, 2007.
[40]
B. D. Rockett, M. Harris, S. Raza-Shaikh. “High dose of an n-3 polyunsaturated fatty acid diet lowers activity of C57BL/6 mice”. Prostaglandins Leukot Essent Fatty Acids, 86(3): 137-140, 2012.
[41]
A. Stinchcomb, B. J. Bowers, J. M. Wehner. “The effects of ethanol and Ro 15-4513 on elevated plus-maze and rotarod performance in long-sleep and short-sleep mice”. Alcohol, 6(5): 369-376, 1989.
[42]
K. W. Gee, M. B. Bolger, R. E. Brinton, H. Coirini, B. S. McEwen. “Steroid modulation of the chloride ionophore in rat brain: structure-activity requirements, regional dependence and mechanism of action”. J Pharmacol Exp Ther, 246: 803-812, 1988.
[43]
M. D. Majewska. “Neurosteroids: endogenous bimodal modulators of the GABAA receptor: mechanism of action and physiological significance”. Prog Neurobiol, 38: 379-395, 1992.
[44]
D. Treit, J. P. Pinel, H. C. Fibiger. “Conditioned defensive burying: a new paradigm for the study of anxiolytic agents”. Pharmacol Biochem Behav, 15: 619-626, 1981.
[45]
C. Luo, Y. L. Zhang, W. Luo, F. H. Zhou, C. Q. Li, J. M. Xu, R. P. Dai. “Differential effects of general anesthetics on anxiety-like behavior in formalin-induced pain: involvement of ERK activation in the anterior cingulate cortex”. Psychopharmacology (Berl), 232(24): 4433-4444, 2015.
[46]
A. Fernández-Guasti, O. Picazo. “Flumazenil blocks the anxiolytic action of allopregnanolone”. Eur J Pharmacol, 281: 113-115, 1995.
[47]
A. Dalvi, R. J. Rodgers. “Anxiolytic effects of valproate and diazepam in mice are differentially sensitive to picrotoxin antagonism”. Pharmacol Biochem Behav, 68(1): 23-32, 2001.
[48]
P. A. Dombrowski, L. H. Fernandes, R. Andreatini. “Picrotoxin blocks the anxiolytic- and panicolytic-like effects of sodium valproate in the rat elevated T-maze”. Eur J Pharmacol, 537(1-3): 72-76, 2006.
[49]
J. A. Benson, K. Loëw, R. Keist, H. Mohler, U. Rudolph. “Pharmacology of recombinant -aminobutyric acidA receptors rendered diazepam-insensitive by point-mutated -subunits”. FEBS Letters, 431: 400-404, 1998.
[50]
H. Möhler. “Functional relevance of GABAA-receptor subtypes”. In: The GABA Receptors. S. J. Enna, H. Möhler (ed). Totowa: Humana Press, pp. 23-40, 2007.
[51]
L. Chen, J. X. Xie, K. S. Fung, W. H. Yung. “Zolpidem modulates GABAA receptor function in subthalamic nucleus”. Neurosci Res, 58(1): 77-85, 2007.
[52]
D. B. Beleslin, N. Djokanovic, D. Jovanovic Micic, R. Samardzic. “Opposite effects of GABAA and NMDA receptor antagonists on ethanol-induced behavioral sleep in rats”. Alcohol, 14(2): 167-173, 1997.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186