Biofield Energy Healing Based Herbomineral Formulation: An Emerging Frontier in Cosmetic Medicine
American Journal of Biomedical and Life Sciences
Volume 5, Issue 3, June 2017, Pages: 36-46
Received: Mar. 28, 2017; Accepted: Apr. 7, 2017; Published: May 9, 2017
Views 2156      Downloads 135
Authors
Dezi Ann Koster, Trivedi Global, Inc., Henderson, USA
Mahendra Kumar Trivedi, Trivedi Global, Inc., Henderson, USA
Alice Branton, Trivedi Global, Inc., Henderson, USA
Dahryn Trivedi, Trivedi Global, Inc., Henderson, USA
Gopal Nayak, Trivedi Global, Inc., Henderson, USA
Mayank Gangwar, Trivedi Science Research Laboratory Pvt. Ltd., Bhopal, India
Snehasis Jana, Trivedi Science Research Laboratory Pvt. Ltd., Bhopal, India
Article Tools
Follow on us
Abstract
The application of the herbomineral formulations in general skin health are increasing day-by-day due to the excellent outcomes without any adverse effects. This study was designed to evaluate the influence of The Trivedi Effect®-Consciousness Energy Healing Treatment on an herbomineral formulation and cell medium against various skin health parameters. The test formulation consists of minerals (zinc chloride, sodium selenate, and sodium molybdate) and L-ascorbic acid along with herbal extracts, Centella asiatica, and tetrahydrocurcumin (THC). The test formulation and DMEM media were divided into two equal parts, one was treated with a Biofield Treatment (BT) by Dezi Ann Koster and denoted as treated, while the other part was coded as the untreated (UT) groups. MTT assay results showed that test formulation was safe and nontoxic with more than 89% cell viability in the tested cell lines. BrdU assay showed an improved cell proliferation by 2.82% in the UT-DMEM + BT-Test formulation group compared with the untreated group. The level of collagen was significantly increased by 32.42%, 33.64%, and 29.13% at 2.5, 1.25 and 0.625 µg/mL, respectively in the UT-DMEM + BT-Test formulation, while34.17%, 26.73%, and 17.56% increased at 2.5, 1.25 and 0.625 µg/mL, respectively in BT-DMEM + BT-Test formulation group compared with the untreated group. Elastin level was increased by 408.6% at concentration of 0.625 µg/mL in UT-DMEM + BT-Test formulation group compared with untreated group. However, hyaluronic acid (HA) level was increased by 31.88%, 15.52%, and 58.29% at 2.5, 1.25, and 0.625 µg/mL, respectively in the BT-DMEM + BT-Test formulation group compared with untreated group. Besides, melanin synthesis was significantly inhibited by 16.09% and 18.93% in the UT-DMEM + BT-Test formulation and BT-DMEM + UT-Test formulation groups, respectively at 0.125 µg/mL compared with the untreated group. Anti-wrinkling activity in HFF-1 cells showed an improved cell viability by 5.49% and 11.26% at 1.25 and 0.625 µg/mL, respectively in BT-DMEM + BT-Test formulation group compared with the untreated group. Wound healing scratch assay results showed a significant healing rate by 5% and 10% in HFF-1 and HaCaT cells lines, respectively with high cellular migration of fibroblast and keratinocytes. Overall, it can be concluded that the Biofield Energy Healing (The Trivedi Effect®) based test formulation and cell medium could be helpful against various skin disorders and can be used in psoriasis, seborrheic dermatitis, skin cancer, rashes from bacterial or fungal infections as anti-wrinkling, skin-whitening, anti-ageing, and rejuvenating agent.
Keywords
Consciousness Energy Healing Treatment, Biofield Energy Treatment, Extracellular Matrix, Hyaluronic Acid, Scratch Assay, Tetrahydrocurcumin, HFF-1 and HaCaT Cells Lines
To cite this article
Dezi Ann Koster, Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Mayank Gangwar, Snehasis Jana, Biofield Energy Healing Based Herbomineral Formulation: An Emerging Frontier in Cosmetic Medicine, American Journal of Biomedical and Life Sciences. Vol. 5, No. 3, 2017, pp. 36-46. doi: 10.11648/j.ajbls.20170503.11
Copyright
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
Tabassum N, Hamdani M (2014) Plants used to treat skin diseases. Pharmacogn Rev 8: 52-60.
[2]
Goyal RK (2005) Investigation of cellular and molecular mechanisms for anti-diabetic drugs with special reference to Unani and Ayurvedic herbal medicines. In: traditional system of medicine, Abdin, M. Z. and Y. P. Abrol (Eds.). Narosa Publishing House, New Delhi.
[3]
WHO (1993) Research Guideline for Evaluating the Safety and Efficacy of Herbal Medicines. World Health Organization, Manila, Philippines.
[4]
Gao XH, Zhang L, Wei H, Chen HD (2008) Efficacy and safety of innovative cosmeceuticals. Clin Dermatol 26: 367-74.
[5]
Fabricant DS, Farnsworth NR (2001) The value of plants used in traditional medicine for drug discovery. Environ Health Perspect 109: 69-75.
[6]
Baumann L (2007) Skin ageing and its treatment. J Pathol 211: 241-251.
[7]
Uitto J (1997) Understanding premature skin aging. N Engl J Med 337: 1463-1465.
[8]
Park K (2015) Role of micronutrients in skin health and function. Biomol Ther (Seoul) 23: 207-217.
[9]
Hashim P (2011) Centella asiatica in food and beverage applications and its potential antioxidant and neuroprotective effect. Int Food Res J 18: 1215-1222.
[10]
Boyera N, Galey I, Bernard BA (1998) Effect of vitamin C and its derivatives on collagen synthesis and cross-linking by normal human fibroblasts. Int J Cosmet Sci 20: 151-158.
[11]
Gupta SC, Patchva S, Koh W, Aggarwal BB (2012) Discovery of curcumin, a component of golden spice, and its miraculous biological activities. Clin Exp Pharmacol Physiol 39: 283-299.
[12]
Majeed M, Badmaev V, Uma S, Rajenderan JR (1995) Curcuminoids: Antioxidant Phytonutrients, Nutreiscience publishers New Jersey 1-24.
[13]
Sugiyama Y, Kawakishi S, Osawa T (1996) Involvement of the β-diketone moiety in the antioxidant mechanism of tetrahydrocurcuminoids. Biochem Pharmacol 52: 519-525.
[14]
Bylka W, Znajdek-Awiżeń P, Studzińska-Sroka E, Brzezińska M (2013) Centella asiatica in cosmetology. Postepy Dermatol Alergol 30: 46-49.
[15]
Rubik B, Muehsam D, Hammerschlag R, Jain S (2015) Biofield science and healing: history, terminology, and concepts. Glob Adv Health Med 4: 8-14.
[16]
Barnes PM, Bloom B, Nahin RL (2008) Complementary and alternative medicine use among adults and children: United States, 2007. Natl Health Stat Report 12: 1-23.
[17]
Jain S, Ives J, Jonas W, Hammerschlag R, Muehsam D, Vieten C, Vicario D, Chopra D, King RP, and Guarneri E (2015) Biofield Science and Healing: An Emerging Frontier in Medicine. Glob Adv Health Med 4: 5-7.
[18]
Peck SD (1998) The efficacy of therapeutic touch for improving functional ability in elders with degenerative arthritis. Nurs Sci Q 11: 123-132.
[19]
Schlitz M, Hopf HW, Eskenazi L, Vieten C, Radin D (2012) Distant healing of surgical wounds: An exploratory study. Explore (NY) 8: 223-230.
[20]
Trivedi MK, Branton A, Trivedi D, Nayak G, Shettigar H, Mondal SC, Jana S (2015) Antibiogram pattern of Shigella flexneri: Effect of biofield treatment. Air Water Borne Diseases 3: 122.
[21]
Trivedi MK, Patil S, Shettigar H, Mondal SC, Jana S (2015) Antimicrobial susceptibility pattern and biochemical characteristics of Staphylococcus aureus: Impact of biofield treatment. J Microb Biochem Technol 7: 238-241.
[22]
Trivedi MK, Branton A, Trivedi D, Nayak G, Shettigar H, Mondal SC, Jana S (2015) Effect of biofield energy treatment on Streptococcus group B: A postpartum pathogen. J Microb Biochem Technol 7: 269-273.
[23]
Trivedi MK, Branton A, Trivedi D, Nayak G, Gangwar M, Jana S (2015) Morphological and molecular analysis using RAPD in biofield treated sponge and bitter gourd. American Journal of Agriculture and Forestry 3: 264-270.
[24]
Trivedi MK, Branton A, Trivedi D, Nayak G, Gangwar M, Jana S (2015) Effect of biofield energy treatment on chlorophyll content, pathological study, and molecular analysis of cashew plant (Anacardium occidentale L.). Journal of Plant Sciences 3: 372-382.
[25]
Trivedi MK, Branton A, Trivedi D, Nayak G, Gangwar M, Jana S (2016) Molecular analysis of biofield treated eggplant and watermelon crops. Adv Crop Sci Tech 4: 208.
[26]
Trivedi MK, Branton A, Trivedi D, Nayak G, Mondal SC, Jana S (2015) Effect of biofield treated energized water on the growth and health status in chicken (Gallus gallus domesticus). Poult Fish Wildl Sci 3: 140.
[27]
Trivedi MK, Nayak G, Patil S, Tallapragada RM, Latiyal O, Jana S (2015) An evaluation of biofield treatment on thermal, physical and structural properties of cadmium powder. J Thermodyn Catal 6: 147.
[28]
Trivedi MK, Nayak G, Patil S, Tallapragada RM, Latiyal O, Jana S (2015) Effect of Biofield energy treatment on physical and structural properties of calcium carbide and praseodymium oxide. International Journal of Materials Science and Applications 4: 390-395.
[29]
Trivedi MK, Tallapragada RM, Branton A, Trivedi D, Nayak G, Latiyal O, Jana S (2015) Characterization of physical, thermal and structural properties of chromium (VI) oxide powder: impact of biofield treatment. J Powder Metall Min 4: 128.
[30]
Plumb JA (2004) Cell sensitivity assays: the MTT assay. Methods Mol Med 88: 165-169.
[31]
Hahn MS, Kobler JB, Starcher BC, Zeitels SM, Langer R (2006) Quantitative and comparative studies of the vocal fold extracellular matrix. I: Elastic fibers and hyaluronic acid. Ann Otol Rhinol Laryngol 115: 156-164.
[32]
Zhang L, Yoshida T, Kuroiwa Y (1992) Stimulation of melanin synthesis of B16-F10 mouse melanoma cells by bufalin. Life Sci 51: 17-24.
[33]
Shoulders MD, Raines RT (2009) Collagen structure and stability. Annual review of biochemistry 78: 929-958.
[34]
Fronza M, Heinzmann B, Hamburger M, Laufer S, Merfort I (2009) Determination of the wound healing effect of Calendula extracts using the scratch assay with 3T3 fibroblasts. J Ethnopharmacol 126: 463-467.
[35]
Kadler KE, Holmes DF, Trotter JA, Chapman JA (1996) Collagen fibril formation. Biochem J 316: 1-11.
[36]
Shoulders MD, Raines RT (2009) Collagen structure and stability. Annual review of biochemistry 78: 929-958.
[37]
Frantz C, Stewart KM, Weaver VM (2010) The extracellular matrix at a glance. J Cell Sci 123: 4195-4200.
[38]
Weindl G, Schaller M, Schäfer-Korting M, Korting HC (2004) Hyaluronic acid in the treatment and prevention of skin diseases: molecular biological, pharmaceutical and clinical aspects. Skin Pharmacol Physiol 17: 207-213.
[39]
Alaluf S, Atkins D, Barrett K, Blount M, Carter N, Heath A. (2002) The impact of epidermal melanin on objective measurements of human skin colour. Pigment Cell Res. 15: 119-126.
[40]
Busca R, Ballotti R (2000) Cyclic AMP a key messenger in the regulation of skin pigmentation. Pigment Cell Res 13: 60-69.
[41]
Bylka W, Znajdek-Awiżeń P, Studzińska-Sroka E, Brzezińska M (2013) Centella asiatica in cosmetology. Postepy Dermatol Alergol 30: 46-49.
[42]
Prasad S, Tyagi AK, Aggarwal BB (2014) Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Res Treat 46: 2-18.
[43]
Ho JN, Lee YH, Lee YD, Jun WJ, Kim HK, Hong BS, Shin DH, Cho HY (2005) Inhibitory effect of Aucubin isolated from Eucommia ulmoides against UVB induced matrix metalloproteinase-1 production in human skin fibroblasts. Biosci Biotechnol Biochem 69: 2227-2231.
[44]
Liang CC, Park AY, Guan JL (2007) In vitro scratch assay: A convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2: 329-333.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186