American Journal of Biomedical and Life Sciences

| Peer-Reviewed |

Potentials of Encapsulated Flavonoids in Biologics: A Review

Received: 09 July 2020    Accepted: 25 July 2020    Published: 25 August 2020
Views:       Downloads:

Share This Article

Abstract

Flavonoids are a versatile class of natural polyphenolic compounds that represent secondary metabolites from higher plants. Their basic structures consists of fifteen-carbon skeleton consisting of two benzene rings (A and B) linked via a heterocyclic pyrane ring (C) to produce a series of subclass compounds such as flavones, flavonols, flavanones, isoflavones, flavanols or catechins and anthocyanins. Their biological activities are dependent on the structure, chemical nature and degree of hydroxylation, substitutions, conjugation and degree of polymerization. A brief description of flavonoids, its source and classification have been described. Although flavonoids are integral in nutraceutical, pharmaceutical, medicinal, cosmetic and other applications their bioavailability to the target tissues and cells are restricted due to poor water solubility and enzymatic degradation. To increase effectiveness, currently encapsulation of the drug candidate in biological material that are able to enhance the potential health benefits by increasing the water solubility and targeted delivery are being achieved. Biodegradable natural, synthetic and semi-synthetic material/ polymers approved by the US Food and Drug Administration (FDA) for use in the preparation of nanodrugs as well as the applied encapsulation technique are discussed that prevent against oxidation, isomerization and degradation of the flavanoids. The aim of this review is to identify specific flavonoids that exhibit increased pharmacological and biological efficiencies on encapsulation. Thus, these potential drugs may help in preventing many chronic diseases and lead to future research directions.

DOI 10.11648/j.ajbls.20200804.16
Published in American Journal of Biomedical and Life Sciences (Volume 8, Issue 4, August 2020)
Page(s) 97-113
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Flavonoids, Encapsulation, Delivery Systems, Biological Activity

References
[1] Mahomoodally, M. F., Gurib-Fakim, A., and Subratty, A. H. (2005). Antimicrobial Activities and Phytochemical Profiles of Endemic Medicinal Plants of Mauritius. Pharmaceutical Biology 43, 237-242.
[2] Pandey, A. K. (2007). Anti-staphylococcal activity of a pan-tropical aggressive and obnoxious weed Parthenium histerophorus: An in vitro study. National Academy Science Letters 30, 383-386.
[3] Agati, G., Azzarello, E., Pollastri, S., and Tattini, M. (2012). Flavonoids as antioxidants in plants: location and functional significance. Plant Sci 196, 67-76.
[4] Mitek, M., and Gasik, A. (2009). Polyphenols in food. The impact on organo leptic characteristics of food [in Polish]. PrzemSpoż 5, 34-39.
[5] J, O., and E, S. (2005). The biological activity of flavonoids [in Polish]. Post Fitoter 3, 71-79.
[6] Heim, K. E., Tagliaferro, A. R., and Bobilya, D. J. (2002). Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. The Journal of nutritional biochemistry 13, 572-584.
[7] Ross, J., and Kasum, C. (2002). Dietary flavonoids: Bioavailability, metabolic effects, and safety. Annual review of nutrition 22, 19-34.
[8] Yao, L. H., Jiang, Y. M., Shi, J., TomÁS-BarberÁN, F. A., Datta, N., Singanusong, R., and Chen, S. S. (2004). Flavonoids in Food and Their Health Benefits. Plant Foods for Human Nutrition 59, 113-122.
[9] Middleton, E. (1998). Effect of Plant Flavonoids on Immune and Inflammatory Cell Function. In Flavonoids in the Living System, J. A. Manthey and B. S. Buslig, eds. (Boston, MA: Springer US), pp. 175-182.
[10] Koes, R., Verweij, W., and Quattrocchio, F. (2005). Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends in Plant Science 10, 236-242.
[11] Hollman, P. C., Bijsman, M. N., van Gameren, Y., Cnossen, E. P., de Vries, J. H., and Katan, M. B. (1999). The sugar moiety is a major determinant of the absorption of dietary flavonoid glycosides in man. Free Radic Res 31, 569-573.
[12] Manach, C., Williamson, G., Morand, C., Scalbert, A., and Rémésy, C. (2005). Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. The American Journal of Clinical Nutrition 81, 230S-242S.
[13] Stahl, W., van den Berg, H., Arthur, J., Bast, A., Dainty, J., Faulks, R. M., Gartner, C., Haenen, G., Hollman, P., Holst, B., et al. (2002). Bioavailability and metabolism. Mol Aspects Med 23, 39-100.
[14] Bilia, A., Isacchi, B., Righeschi, C., Guccione, C., Maria, C., and Bergonzi, M. (2014). Flavonoids Loaded in Nanocarriers: An Opportunity to Increase Oral Bioavailability and Bioefficacy. Food and Nutrition Sciences 05.
[15] Kumar, S., and Pandey, A. K. (2013). Chemistry and Biological Activities of Flavonoids: An Overview. The Scientific World Journal 2013, 162750.
[16] Macheix, J.-J., Fleuriet, A., and Jay-Allemand, C. (2005). Les composés phénoliques des végétaux: un exemple de métabolites secondaires d'importance économique, (Lausanne: Presses polytechniques et universitaires romandes).
[17] Fang, Z., and Bhandari, B. (2010). Encapsulation of polyphenols – a review. Trends in Food Science & Technology 21, 510-523.
[18] El Gharras, H. (2009). Polyphenols: food sources, properties and applications – a review. International Journal of Food Science & Technology 44, 2512-2518.
[19] Manach, C., Scalbert, A., Morand, C., Remesy, C., and Jimenez, L. (2004). Polyphenols: food sources and bioavailability. Am J Clin Nutr 79, 727-747.
[20] Maatta-Riihinen, K. R., Kahkonen, M. P., Torronen, A. R., and Heinonen, I. M. (2005). Catechins and procyanidins in berries of vaccinium species and their antioxidant activity. J Agric Food Chem 53, 8485-8491.
[21] Bagchi, D., Sen, C. K., Bagchi, M., and Atalay, M. (2004). Anti-angiogenic, antioxidant, and anti-carcinogenic properties of a novel anthocyanin-rich berry extract formula. Biochemistry (Mosc) 69, 75-80, 71 p preceding 75.
[22] Marin, F. R., Perez-Alvarez, J. A., and Soler-Rivas, C. (2005). Isoflavones as functional food components. In Stud. Nat. Prod. Chem., Volume 32. (Elsevier), pp. 1177-1207.
[23] Lin, Y., Shi, R., Wang, X., and Shen, H. M. (2008). Luteolin, a flavonoid with potential for cancer prevention and therapy. Curr Cancer Drug Targets 8, 634-646.
[24] Patel, D., Shukla, S., and Gupta, S. (2007). Apigenin and cancer chemoprevention: progress, potential and promise (review). Int J Oncol 30, 233-245.
[25] Lapidot, T., Walker, M. D., and Kanner, J. (2002). Antioxidant and prooxidant effects of phenolics on pancreatic beta-cells in vitro. J Agric Food Chem 50, 7220-7225.
[26] Galati, G., and O'Brien, P. J. (2004). Potential toxicity of flavonoids and other dietary phenolics: significance for their chemopreventive and anticancer properties. Free Radic Biol Med 37, 287-303.
[27] Munin, A., and Edwards-Levy, F. (2011). Encapsulation of natural polyphenolic compounds; a review. Pharmaceutics 3, 793-829.
[28] HJ, R., S, L., C, E., and B, K. (2009). Anthocyanins. Pennigton Nutrition Series.
[29] Sarni-Manchado, P., and Cheynier, V. (2005). Les polyphénolsenagroalimentaire, (Paris, France: Tec & Doc Lavoisier).
[30] Chiu, Y. T., Chiu, C. P., Chien, J. T., Ho, G. H., Yang, J., and Chen, B. H. (2007). Encapsulation of Lycopene Extract from Tomato Pulp Waste with Gelatin and Poly (γ-glutamic acid) as Carrier. Journal of Agricultural and Food Chemistry 55, 5123-5130.
[31] Jahanshahi, M., Najafpour, G., and Rahimnejad, M. (2008). Applying the Taguchi method for optimized fabrication of bovine serum albumin (BSA) nanoparticles as drug delivery vehicles. African Journal of Biotechnology (ISSN: 1684-5315) Vol 7 Num 4 7.
[32] Jin, J., Sklar, G. E., Min Sen Oh, V., and Chuen Li, S. (2008). Factors affecting therapeutic compliance: A review from the patient's perspective. Ther. Clin. Risk Manag. 4, 269-286.
[33] Solecki, R. S. (1975). Shanidar IV, a Neanderthal Flower Burial in Northern Iraq. Science 190, 880.
[34] Saklani, A., and Kutty, S. K. (2008). Plant-derived compounds in clinical trials. Drug Discov. Today 13, 161-171.
[35] Shahidi, F., and Han, X. Q. (1993). Encapsulation of food ingredients. Critical Reviews in Food Science and Nutrition 33, 501-547.
[36] Available from: http://www.apps.who.int/medicinedocs/ en/d/Js7916e/7.12.html., Volume 2015.
[37] Marin, E., Briceño, M. I., and Caballero-George, C. (2013). Critical evaluation of biodegradable polymers used in nanodrugs. Int J Nanomedicine 8, 3071-3090.
[38] Augustin, M. A., and Hemar, Y. (2009). Nano- and micro-structured assemblies for encapsulation of food ingredients. Chem. Soc. Rev. 38, 902-912.
[39] Desai, K. G. H., and Jin Park, H. (2005). Recent Developments in Microencapsulation of Food Ingredients. Drying Technol. 23, 1361-1394.
[40] Gibbs, B. F., Kermasha, S., Alli, I., and Mulligan, C. N. (1999). Encapsulation in the food industry: a review. Int J Food Sci Nutr 50, 213-224.
[41] Mozafari, M. R., Khosravi-Darani, K., Borazan, G. G., Cui, J., Pardakhty, A., and Yurdugul, S. (2008). Encapsulation of Food Ingredients Using Nanoliposome Technology. Int. J. Food Prop. 11, 833-844.
[42] N., B. L. (2001). Stability testing of nutraceuticals and functional foods. In nutraceuticals and functional foods R. E. C. Wildman, ed. (New York: CRC Press), pp. 501-516.
[43] Chen, L., Remondetto, G., and Subirade, M. (2006). Food protein-based materials as nutraceutical delivery systems. Trends in Food Science & Technology - TRENDS FOOD SCI TECHNOL 17, 272-283.
[44] Mukhopadhyay, P., Mishra, R., Rana, D., and Kundu, P. P. (2012). Strategies for effective oral insulin delivery with modified chitosan nanoparticles: A review. Prog. Polym. Sci. 37, 1457-1475.
[45] Ravi Kumar, M. N. V. (2000). A review of chitin and chitosan applications. React. Funct. Polym. 46, 1-27.
[46] Huang, M., Khor, E., and Lim, L.-Y. (2004). Uptake and Cytotoxicity of Chitosan Molecules and Nanoparticles: Effects of Molecular Weight and Degree of Deacetylation. Pharm. Res. 21, 344-353.
[47] Ma, Z., Lim, T. M., and Lim, L. Y. (2005). Pharmacological activity of peroral chitosan-insulin nanoparticles in diabetic rats. Int J Pharm 293, 271-280.
[48] Smith, J. M., Dornish, M., and Wood, E. J. (2005). Involvement of protein kinase C in chitosan glutamate-mediated tight junction disruption. Biomaterials 26, 3269-3276.
[49] Qiao, Y., Bai, X. F., and Du, Y. G. (2011). Chitosan oligosaccharides protect mice from LPS challenge by attenuation of inflammation and oxidative stress. Int. Immunopharmacol. 11, 121-127.
[50] Liu, H. T., Li, W. M., Xu, G., Li, X. Y., Bai, X. F., Wei, P., Yu, C., and Du, Y. G. (2009). Chitosan oligosaccharides attenuate hydrogen peroxide-induced stress injury in human umbilical vein endothelial cells. Pharmacol. Res. 59, 167-175.
[51] Singla, A., and Chawla, M. J. (2001). Chitosan: Some pharmaceutical and biological aspects - An update. The Journal of pharmacy and pharmacology 53, 1047-1067.
[52] Mukhopadhyay, P., Sarkar, K., Bhattacharya, S., Bhattacharyya, A., Mishra, R., and Kundu, P. P. (2014). pH sensitive N-succinyl chitosan grafted polyacrylamide hydrogel for oral insulin delivery. Carbohydr. Polym. 112, 627-637.
[53] Sonvico, F., Cagnani, A., Rossi, A., Motta, S., Di Bari, M. T., Cavatorta, F., Alonso, M. J., Deriu, A., and Colombo, P. (2006). Formation of self-organized nanoparticles by lecithin/chitosan ionic interaction. Int. J. Pharm. 324, 67-73.
[54] Raj, L., Jonisha, R., Revathi, B., and Jayalakshmy, E. (2015). Preparation and characterization of BSA and chitosan nanopartices for sustainable delivery system for quercetin. Journal of Applied Pharmaceutical Science, 001-005.
[55] Feng, C., Wang, Z., Jiang, C., Kong, M., Zhou, X., Li, Y., Cheng, X., and Chen, X. (2013). Chitosan/o-carboxymethyl chitosan nanoparticles for efficient and safe oral anticancer drug delivery: in vitro and in vivo evaluation. Int J Pharm 457, 158-167.
[56] Hazra, M., Dasgupta Mandal, D., Mandal, T., Bhuniya, S., and Ghosh, M. (2015). Designing polymeric microparticulate drug delivery system for hydrophobic drug quercetin. Saudi Pharmaceutical Journal 23, 429-436.
[57] Zhang, Y., Yang, Y., Tang, K., Hu, X., and Zou, G. (2008). Physicochemical characterization and antioxidant activity of quercetin-loaded chitosan nanoparticles. J. Appl. Polym. Sci. 107, 891-897.
[58] David, K. I., Jaidev, L. R., Sethuraman, S., and Krishnan, U. M. (2015). Dual drug loaded chitosan nanoparticles-sugar--coated arsenal against pancreatic cancer. Colloids Surf. B. Biointerfaces 135, 689-698.
[59] Choi, J.-S., Jo, B.-W., and Kim, Y.-C. (2004). Enhanced paclitaxel bioavailability after oral administration of paclitaxel or prodrug to rats pretreated with quercetin. European journal of pharmaceutics and biopharmaceutics: official journal of Arbeitsgemeinschaft für Pharmazeutische Verfahrenstechnik e. V 57, 313-318.
[60] Kumari, A., Yadav, S. K., and Yadav, S. C. (2010). Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B. Biointerfaces 75, 1-18.
[61] Asghar, W., Islam, M., Wadajkar, A., Wan, Y., Ilyas, A., Nguyen, K., and Iqbal, S. (2012). PLGA Micro and Nanoparticles Loaded Into Gelatin Scaffold for Controlled Drug Release. IEEE Transactions on Nanotechnology - IEEE TRANS NANOTECHNOL 11, 546-553.
[62] Hussein, A. S., Abdullah, N., and Ahmadun, F. R. (2013). In vitro degradation of poly (D, L-lactide-co-glycolide) nanoparticles loaded with linamarin. IET Nanobiotechnol 7, 33-41.
[63] Gratton, S. E. A., Ropp, P. A., Pohlhaus, P. D., Luft, J. C., Madden, V. J., Napier, M. E., and DeSimone, J. M. (2008). The effect of particle design on cellular internalization pathways. Proceedings of the National Academy of Sciences 105, 11613.
[64] Bishayee, K., Khuda-Bukhsh, A. R., and Huh, S. O. (2015). PLGA-Loaded Gold-Nanoparticles Precipitated with Quercetin Downregulate HDAC-Akt Activities Controlling Proliferation and Activate p53-ROS Crosstalk to Induce Apoptosis in Hepatocarcinoma Cells. Mol. Cells 38, 518-527.
[65] El-Gogary, R. I., Rubio, N., Wang, J. T.-W., Al-Jamal, W. T., Bourgognon, M., Kafa, H., Naeem, M., Klippstein, R., Abbate, V., Leroux, F., et al. (2014). Polyethylene Glycol Conjugated Polymeric Nanocapsules for Targeted Delivery of Quercetin to Folate-Expressing Cancer Cells in Vitro and in Vivo. ACS Nano 8, 1384-1401.
[66] Pandey, S. K., Patel, D. K., Thakur, R., Mishra, D. P., Maiti, P., and Haldar, C. (2015). Anti-cancer evaluation of quercetin embedded PLA nanoparticles synthesized by emulsified nanoprecipitation. Int. J. Biol. Macromol. 75, 521-529.
[67] Iao, V. (1993). Liposomes: from physics to applications.
[68] Stone, W. L., and Smith, M. (2004). Therapeutic uses of antioxidant liposomes. Mol. Biotechnol. 27, 217-230.
[69] Schnyder, A., and Huwyler, J. (2005). Drug transport to brain with targeted liposomes. NeuroRx 2, 99-107.
[70] Soica, C., Dehelean, C., Danciu, C., Wang, H. M., Wenz, G., Ambrus, R., Bojin, F., and Anghel, M. (2012). Betulin complex in gamma-cyclodextrin derivatives: properties and antineoplasic activities in in vitro and in vivo tumor models. Int. J. Mol. Sci. 13, 14992-15011.
[71] Crini, G. (2014). Review: A History of Cyclodextrins. Chem. Rev. 114, 10940-10975.
[72] Dodziuk, H. (2006). Cyclodextrins and their complexes: chemistry, analytical methods, applications, (John Wiley & Sons).
[73] Folch-Cano, C., Guerrero, J., Speisky, H., Jullian, C., and Olea-Azar, C. (2014). NMR and molecular fluorescence spectroscopic study of the structure and thermodynamic parameters of EGCG/β-cyclodextrin inclusion complexes with potential antioxidant activity. J. Incl. Phenom. Macrocycl. Chem. 78, 287-298.
[74] Zheng, Y., Haworth, I. S., Zuo, Z., Chow, M. S., and Chow, A. H. (2005). Physicochemical and structural characterization of quercetin-beta-cyclodextrin complexes. J. Pharm. Sci. 94, 1079-1089.
[75] Carlotti, M. E., Sapino, S., Ugazio, E., and Caron, G. (2011). On the complexation of quercetin with methyl-β-cyclodextrin: photostability and antioxidant studies. J. Incl. Phenom. Macrocycl. Chem. 70, 81-90.
[76] Wang, Q., Bao, Y., Ahire, J., and Chao, Y. (2013). Co-encapsulation of Biodegradable Nanoparticles with Silicon Quantum Dots and Quercetin for Monitored Delivery. Advanced Healthcare Materials 2, 459-466.
[77] Barreto, A. C. H., Santiago, V. R., Mazzetto, S. E., Denardin, J. C., Lavín, R., Mele, G., Ribeiro, M. E. N. P., Vieira, I. G. P., Gonçalves, T., Ricardo, N. M. P. S., et al. (2011). Magnetic nanoparticles for a new drug delivery system to control quercetin releasing for cancer chemotherapy. J. Nanopart. Res. 13, 6545-6553.
[78] Hudson, S. P., Padera, R. F., Langer, R., and Kohane, D. S. (2008). The biocompatibility of mesoporous silicates. Biomaterials 29, 4045-4055.
[79] Ambrogio, M. W., Thomas, C. R., Zhao, Y.-L., Zink, J. I., and Stoddart, J. F. (2011). Mechanized Silica Nanoparticles: A New Frontier in Theranostic Nanomedicine. Acc. Chem. Res. 44, 903-913.
[80] Fontecave, T., Sanchez, C., Azaïs, T., and Boissière, C. (2012). Chemical Modification As a Versatile Tool for Tuning Stability of Silica Based Mesoporous Carriers in Biologically Relevant Conditions. Chem. Mater. 24, 4326-4336.
[81] Wang, Y., Zhao, Q., Han, N., Bai, L., Li, J., Liu, J., Che, E., Hu, L., Zhang, Q., Jiang, T., et al. (2015). Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomed. Nanotechnol. Biol. Med. 11, 313-327.
[82] Andersson, J., Rosenholm, J., Areva, S., and Lindén, M. (2004). Influences of Material Characteristics on Ibuprofen Drug Loading and Release Profiles from Ordered Micro- and Mesoporous Silica Matrices. Chem. Mater. 16, 4160-4167.
[83] Hu, Y., Zhi, Z., Zhao, Q., Wu, C., Zhao, P., Jiang, H., Jiang, T., and Wang, S. (2012). 3D cubic mesoporous silica microsphere as a carrier for poorly soluble drug carvedilol. Microporous Mesoporous Mater. 147, 94–101.
[84] Catauro, M., Papale, F., Bollino, F., Piccolella, S., Marciano, S., Nocera, P., and Pacifico, S. (2015). Silica/quercetin sol-gel hybrids as antioxidant dental implant materials. Sci Technol Adv Mater 16, 035001-035001.
[85] Goniotaki, M., Hatziantoniou, S., Dimas, K., Wagner, M., and Demetzos, C. (2004). Encapsulation of naturally occurring flavonoids into liposomes: Physicochemical properties and biological activity against human cancer cell lines. The Journal of pharmacy and pharmacology 56, 1217-1224.
[86] Gao, X., Wang, B., Wei, X., Men, K., Zheng, F., Zhou, Y., Zheng, Y., Gou, M., Huang, M., and Guo, G. (2012). Anticancer effect and mechanism of polymer micelle-encapsulated quercetin on ovarian cancer. Nanoscale 4, 7021-7030.
[87] Siddiqui, I. A., Bharali, D. J., Nihal, M., Adhami, V. M., Khan, N., Chamcheu, J. C., Khan, M. I., Shabana, S., Mousa, S. A., and Mukhtar, H. (2014). Excellent anti-proliferative and pro-apoptotic effects of (-)-epigallocatechin-3-gallate encapsulated in chitosan nanoparticles on human melanoma cell growth both in vitro and in vivo. Nanomedicine 10, 1619-1626.
[88] Shafiei, S. S., Solati-Hashjin, M., Samadikuchaksaraei, A., Kalantarinejad, R., Asadi-Eydivand, M., and Abu Osman, N. A. (2015). Epigallocatechin Gallate/Layered Double Hydroxide Nanohybrids: Preparation, Characterization, and In Vitro Anti-Tumor Study. PLoS One 10, e0136530.
[89] Chen, Y., Wu, Q., Song, L., He, T., Li, Y., Li, L., Su, W., Liu, L., Qian, Z., and Gong, C. (2015). Polymeric micelles encapsulating fisetin improve the therapeutic effect in colon cancer. ACS Appl Mater Interfaces 7, 534-542.
[90] Kulbacka, J., Pucek, A., Kotulska, M., Dubinska-Magiera, M., Rossowska, J., Rols, M. P., and Wilk, K. A. (2016). Electroporation and lipid nanoparticles with cyanine IR-780 and flavonoids as efficient vectors to enhanced drug delivery in colon cancer. Bioelectrochemistry 110, 19-31.
[91] Abdolahad, M., Janmaleki, M., Mohajerzadeh, S., Akhavan, O., and Abbasi, S. (2013). Polyphenols attached graphene nanosheets for high efficiency NIR mediated photodestruction of cancer cells. Materials Science and Engineering: C 33, 1498-1505.
[92] Liu, A., Wang, W., Fang, H., Yang, Y., Jiang, X., Liu, S., Hu, J., Hu, Q., Dahmen, U., and Dirsch, O. (2015). Baicalein protects against polymicrobial sepsis-induced liver injury via inhibition of inflammation and apoptosis in mice. Eur. J. Pharmacol. 748, 45-53.
[93] Majumdar, D., Jung, K. H., Zhang, H., Nannapaneni, S., Wang, X., Amin, A. R., Chen, Z., Chen, Z. G., and Shin, D. M. (2014). Luteolin nanoparticle in chemoprevention: in vitro and in vivo anticancer activity. Cancer Prev. Res. (Phila.) 7, 65-73.
[94] Sun, M., Nie, S., Pan, X., Zhang, R., Fan, Z., and Wang, S. (2014). Quercetin-nanostructured lipid carriers: characteristics and anti-breast cancer activities in vitro. Colloids Surf. B. Biointerfaces 113, 15-24.
[95] Kadari, A., Gudem, S., Kulhari, H., Bhandi, M. M., Borkar, R. M., Kolapalli, V. R. M., and Sistla, R. (2017). Enhanced oral bioavailability and anticancer efficacy of fisetin by encapsulating as inclusion complex with HPβCD in polymeric nanoparticles. Drug Deliv. 24, 224-232.
[96] Narayanan, S., Mony, U., Vijaykumar, D. K., Koyakutty, M., Paul-Prasanth, B., and Menon, D. (2015). Sequential release of epigallocatechin gallate and paclitaxel from PLGA-casein core/shell nanoparticles sensitizes drug-resistant breast cancer cells. Nanomedicine 11, 1399-1406.
[97] Sabzichi, M., Hamishehkar, H., Ramezani, F., Sharifi, S., Tabasinezhad, M., Pirouzpanah, M., Ghanbari, P., and Samadi, N. (2014). Luteolin-loaded phytosomes sensitize human breast carcinoma MDA-MB 231 cells to doxorubicin by suppressing Nrf2 mediated signalling. Asian Pac J Cancer Prev 15, 5311-5316.
[98] Minaei, A., Sabzichi, M., Ramezani, F., Hamishehkar, H., and Samadi, N. (2016). Co-delivery with nano-quercetin enhances doxorubicin-mediated cytotoxicity against MCF-7 cells. Mol. Biol. Rep. 43, 99-105.
[99] Krishnan, G., Subramaniyan, J., Chengalvarayan Subramani, P., Muralidharan, B., and Thiruvengadam, D. (2017). Hesperetin conjugated PEGylated gold nanoparticles exploring the potential role in anti-inflammation and anti-proliferation during diethylnitrosamine-induced hepatocarcinogenesis in rats. Asian J Pharm Sci 12, 442-455.
[100] Testa, G., Gamba, P., Badilli, U., Gargiulo, S., Maina, M., Guina, T., Calfapietra, S., Biasi, F., Cavalli, R., Poli, G., et al. (2014). Loading into Nanoparticles Improves Quercetin's Efficacy in Preventing Neuroinflammation Induced by Oxysterols. PLoS One 9, e96795.
[101] Maity, S., Mukhopadhyay, P., Kundu, P. P., and Chakraborti, A. S. (2017). Alginate coated chitosan core-shell nanoparticles for efficient oral delivery of naringenin in diabetic animals-An in vitro and in vivo approach. Carbohydr. Polym. 170, 124-132.
[102] Chitkara, D., Nikalaje, S. K., Mittal, A., Chand, M., and Kumar, N. (2012). Development of quercetin nanoformulation and in vivo evaluation using streptozotocin induced diabetic rat model. Drug Deliv Transl Res 2, 112-123.
[103] Ameer, B., Weintraub, R. A., Johnson, J. V., Yost, R. A., and Rouseff, R. L. (1996). Flavanone absorption after naringin, hesperidin, and citrus administration. Clin. Pharmacol. Ther. 60, 34-40.
[104] Cushnie, T. P., and Lamb, A. J. (2005). Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 26, 343-356.
[105] Tripoli, E., La Guardia, M., Giammanco, S., Di Majo, D., and Giammanco, M. (2007). Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food Chem. 104, 466-479.
[106] Song, X., Zhao, Y., Wu, W., Bi, Y., Cai, Z., Chen, Q., Li, Y., and Hou, S. (2008). PLGA nanoparticles simultaneously loaded with vincristine sulfate and verapamil hydrochloride: Systematic study of particle size and drug entrapment efficiency. Int. J. Pharm. 350, 320-329.
[107] Moon, S. H., Lee, J. H., Kim, K.-T., Park, Y.-S., Nah, S.-Y., Ahn, D. U., and Paik, H.-D. (2013). Antimicrobial effect of 7-O-butylnaringenin, a novel flavonoid, and various natural flavonoids against Helicobacter pylori strains. International journal of environmental research and public health 10, 5459-5469.
[108] Natan, M., and Banin, E. (2017). From Nano to Micro: using nanotechnology to combat microorganisms and their multidrug resistance. FEMS Microbiol Rev 41, 302-322.
[109] Danhier, F., Ansorena, E., Silva, J. M., Coco, R., Le Breton, A., and Préat, V. (2012). PLGA-based nanoparticles: an overview of biomedical applications. Journal of controlled release 161, 505-522.
[110] I, N., F, K., J, F. S., M, P. M., and T, A. (2017). Nutrient Delivery (Amsterdam: Elsevier).
[111] Duranoğlu, D., Uzunoglu, D., Mansuroglu, B., Arasoglu, T., and Derman, S. (2018). Synthesis of hesperetin-loaded PLGA nanoparticles by two different experimental design methods and biological evaluation of optimized nanoparticles. Nanotechnology 29, 395603.
[112] Ilk, S., Saglam, N., Ozgen, M., and Korkusuz, F. (2017). Chitosan nanoparticles enhances the anti-quorum sensing activity of kaempferol. Int. J. Biol. Macromol. 94, 653-662.
[113] Ilk, S., Saglam, N., and Özgen, M. (2017). Kaempferol loaded lecithin/chitosan nanoparticles: Preparation, characterization, and their potential applications as a sustainable antifungal agent. Artificial cells, nanomedicine, and biotechnology 45, 907-916.
[114] De Carli, C., Moraes-Lovison, M., and Pinho, S. C. (2018). Production, physicochemical stability of quercetin-loaded nanoemulsions and evaluation of antioxidant activity in spreadable chicken pâtés. LWT 98, 154-161.
[115] Huang, J., Wang, Q., Li, T., Xia, N., and Xia, Q. (2017). Nanostructured lipid carrier (NLC) as a strategy for encapsulation of quercetin and linseed oil: Preparation and in vitro characterization studies. J. Food Eng. 215.
Author Information
  • Department of Chemistry, Savitribai Phule Pune University, Pune, India

  • Department of Chemistry, Savitribai Phule Pune University, Pune, India

Cite This Article
  • APA Style

    Mahesh Dattatraya Dere, Ayesha Alim Khan. (2020). Potentials of Encapsulated Flavonoids in Biologics: A Review. American Journal of Biomedical and Life Sciences, 8(4), 97-113. https://doi.org/10.11648/j.ajbls.20200804.16

    Copy | Download

    ACS Style

    Mahesh Dattatraya Dere; Ayesha Alim Khan. Potentials of Encapsulated Flavonoids in Biologics: A Review. Am. J. Biomed. Life Sci. 2020, 8(4), 97-113. doi: 10.11648/j.ajbls.20200804.16

    Copy | Download

    AMA Style

    Mahesh Dattatraya Dere, Ayesha Alim Khan. Potentials of Encapsulated Flavonoids in Biologics: A Review. Am J Biomed Life Sci. 2020;8(4):97-113. doi: 10.11648/j.ajbls.20200804.16

    Copy | Download

  • @article{10.11648/j.ajbls.20200804.16,
      author = {Mahesh Dattatraya Dere and Ayesha Alim Khan},
      title = {Potentials of Encapsulated Flavonoids in Biologics: A Review},
      journal = {American Journal of Biomedical and Life Sciences},
      volume = {8},
      number = {4},
      pages = {97-113},
      doi = {10.11648/j.ajbls.20200804.16},
      url = {https://doi.org/10.11648/j.ajbls.20200804.16},
      eprint = {https://download.sciencepg.com/pdf/10.11648.j.ajbls.20200804.16},
      abstract = {Flavonoids are a versatile class of natural polyphenolic compounds that represent secondary metabolites from higher plants. Their basic structures consists of fifteen-carbon skeleton consisting of two benzene rings (A and B) linked via a heterocyclic pyrane ring (C) to produce a series of subclass compounds such as flavones, flavonols, flavanones, isoflavones, flavanols or catechins and anthocyanins. Their biological activities are dependent on the structure, chemical nature and degree of hydroxylation, substitutions, conjugation and degree of polymerization. A brief description of flavonoids, its source and classification have been described. Although flavonoids are integral in nutraceutical, pharmaceutical, medicinal, cosmetic and other applications their bioavailability to the target tissues and cells are restricted due to poor water solubility and enzymatic degradation. To increase effectiveness, currently encapsulation of the drug candidate in biological material that are able to enhance the potential health benefits by increasing the water solubility and targeted delivery are being achieved. Biodegradable natural, synthetic and semi-synthetic material/ polymers approved by the US Food and Drug Administration (FDA) for use in the preparation of nanodrugs as well as the applied encapsulation technique are discussed that prevent against oxidation, isomerization and degradation of the flavanoids. The aim of this review is to identify specific flavonoids that exhibit increased pharmacological and biological efficiencies on encapsulation. Thus, these potential drugs may help in preventing many chronic diseases and lead to future research directions.},
     year = {2020}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Potentials of Encapsulated Flavonoids in Biologics: A Review
    AU  - Mahesh Dattatraya Dere
    AU  - Ayesha Alim Khan
    Y1  - 2020/08/25
    PY  - 2020
    N1  - https://doi.org/10.11648/j.ajbls.20200804.16
    DO  - 10.11648/j.ajbls.20200804.16
    T2  - American Journal of Biomedical and Life Sciences
    JF  - American Journal of Biomedical and Life Sciences
    JO  - American Journal of Biomedical and Life Sciences
    SP  - 97
    EP  - 113
    PB  - Science Publishing Group
    SN  - 2330-880X
    UR  - https://doi.org/10.11648/j.ajbls.20200804.16
    AB  - Flavonoids are a versatile class of natural polyphenolic compounds that represent secondary metabolites from higher plants. Their basic structures consists of fifteen-carbon skeleton consisting of two benzene rings (A and B) linked via a heterocyclic pyrane ring (C) to produce a series of subclass compounds such as flavones, flavonols, flavanones, isoflavones, flavanols or catechins and anthocyanins. Their biological activities are dependent on the structure, chemical nature and degree of hydroxylation, substitutions, conjugation and degree of polymerization. A brief description of flavonoids, its source and classification have been described. Although flavonoids are integral in nutraceutical, pharmaceutical, medicinal, cosmetic and other applications their bioavailability to the target tissues and cells are restricted due to poor water solubility and enzymatic degradation. To increase effectiveness, currently encapsulation of the drug candidate in biological material that are able to enhance the potential health benefits by increasing the water solubility and targeted delivery are being achieved. Biodegradable natural, synthetic and semi-synthetic material/ polymers approved by the US Food and Drug Administration (FDA) for use in the preparation of nanodrugs as well as the applied encapsulation technique are discussed that prevent against oxidation, isomerization and degradation of the flavanoids. The aim of this review is to identify specific flavonoids that exhibit increased pharmacological and biological efficiencies on encapsulation. Thus, these potential drugs may help in preventing many chronic diseases and lead to future research directions.
    VL  - 8
    IS  - 4
    ER  - 

    Copy | Download

  • Sections