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The methodology of a turbine optimal design as a complex multi-level 

engineering system should support the operation with diverse mathematical 

models, providing for each design problem communication between the 

neighboring subsystems levels. 

One approach to turbine design with using of block-hierarchical 

representation consists in the transition from the original mathematical models 

for the subsystems and numerical methods of optimization to "all-purpose" 

mathematical model and general method of parameters optimization. 

1.1  Mathematical Models and the Object Design Problem 

We will specify as original the mathematical model (OMM), which is a 

closed system of equations that describe the phenomena occurring in the 

designed object. 

Regardless of the mathematical apparatus (algebraic, ordinary differential, 

integral, partial differential equations, etc.), OMM can be represented 

symbolically as follows: 

    , , , 0Y Y B X L B X  , (1.1) 

where  ,X x u ;  ,L B X  – the operator defining the model’s system of 

equations. 

The parameters Y  characterize the quality indicators; B  – entering the 

subsystems model from adjacent levels, the operational environment of the 

object. Parameters X  can be either dependent, calculated by the OMM equation 

( x ) or independent, the choice of which provides the designer ( u ). It is 

understood that the number of internal parameters of the object includes all 

internal parameters of the elements of underlying layers. 
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Significant simplification and unification of the subsystems description 

achieved by OMM approximation with a model, which we call a formal 

macromodel (FMM). We represent the FMM as a complete polynomial of the 

2-nd degree, by which in many cases it is possible to approximate the output 

parameters with sufficient accuracy: 

    
1

0

1 1 1

n n n

i ii i i ij i j

i i j i

y q A A A q q A q q


   

     . (1.2) 

FMM parameters vector is expressed through the IMM parameters as 

  ,Q Q u B . (1.3) 

hence FMM may be represented symbolically as follows: 

  ,y y B u . (1.4) 

Comparing (1.4) and (1.1), we see that the FMM have no phase variables. 

The transformation of one model to another with a fewer number of variables or 

constraints, giving an approximated description of the investigated object or 

process compared to the initial, will be called aggregation. Thus, the FMM is 

aggregated with respect to (1.1). 

The problems of the object’s optimal design using models (1.1) and (1.4) will 

be called following: 

    max , , , , 0j
u U

Y B x u L B X


 ; (1.5) 

  max ,
u U

y B u


. (1.6) 

Suppose, that the problem (1.6) is solved for all possible values of the vector 

B


 that allows you to build approximation dependencies 
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    opt opt opt opt,y y B u u B  , (1.7) 

containing information on all kinds of optimal designs. The model (1.7) is 

aggregated with respect to (1.4) and (1.5). The same could be made with the 

OMM: by virtue of solving the equations of the model would have disappeared 

phase, and by optimizing – control variables. Usually, however, this task is too 

complex for the numerical solution. 

An approximate solution can be achieved with the help of disaggregation, i.e. 

mapping of aggregated variables in the model space of OMM. Substituting    

(1.7) to (1.1), we obtain: 

    opt, , , , 0j jY Y B x u B L B X  , 

where are optx  and opt

jY  – solution of OMM. 

For example, in the optimal design of turbine cascade the quality criterion is 

the energy loss ratio, OMM – ideal gas motion and the boundary layer on the 

profile equations, phase variables – flow parameters, control – profile shape, 

cascade spacing and others. 

In practice, instead of the loss calculation OMM various empirical loss 

calculation methods used, which, in fact, are FMMs of form (1.7), because does 

not take into account information about any and just about the currently best 

("optimum") profile cascades. In this way, at higher design levels use only the 

information on the improved aerodynamic profiles loss ratio. 

The approach described can be applied to multi-level design of complex 

systems. 
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1.2  Optimization of Complex Technical Devices 

1.2.1  Design Hierarchy 

Block-hierarchical representation of the design process, implemented with 

the creation of complex technical devices, leads to a problem of such 

complexity that can be effectively resolved by means of modern computing, and 

the results of the decision – understood and analyzed by experts. Typically, the 

design hierarchy of tasks is formed along functional lines for turbine can have 

the form shown in Fig. 1.1. 

 

 

Figure 1.1  Hierarchy of turbine design problems. 
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Figure 1.2  Nearby hierarchy levels of optimization problems. 

The uniformity of mathematical models of the subsystems of the same level 

and local optimality criteria make it possible to organize the process of       

multi-level design, providing maximum global quality criterion of the whole 

system, in our case – the turbine. This process is based on the idea of so-called 

multilevel optimization approximation scheme that involves aggregation of 

mathematical models of the subsystems in the hierarchy when moving upward 

and disaggregation based on optimization results when moving downwards. 

The problem of optimization the subsystem parameters described by OMM 

has the form (1.5). It can be solved by the methods of nonlinear programming 

and optimal control, depending on the form of the equations and the optimality 

criterion of the OMM. 

Consider the solution order for the problems hierarchy of the system 

parameters optimization. Input parameters of k-level subsystem form of the set 

of internal and external parameters of the higher (k–1)-level subsystem. 

Feedback is carried out at the expense of the influence of the output parameters 

1kB 
  of the subsystem of k-level which with respect to the (k–1)-th subsystem is 

external. Complete vector of (k–1)-level external parameters, thus consists of a 

vector of external parameters 
1kB 

 , coming from the higher-level and  

lower-level subsystems of vectors 
1kB 

  (Fig. 1.2). 
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Moving from the bottom up, we solve the problem of the form (1.6) at each 

k-level for all possible values of the vector of external parameters coming from 

a higher level. In this phase k-level variables are excluded from the internal 

parameters of the (k–1)-level model by effect of equations describing the k-level 

subsystem, and control – as a result of optimization. Thus, at each level above 

information is transmitted not about all, but only about the best projects of 

lower-level subsystems: 

  opt

1k k kB Y B
  . (1.8) 

At the top, the 1-st level, from the problem (1.5) output parameters found, 

and predetermine external parameters of the level 2 subsystems, which makes it 

possible to restore the optimum parameters of the 2-nd level, solving the same 

problem (1.5). This disaggregation process extends to the lowest level, with the 

result that the optimal parameters are determined by all the subsystems that 

make up the complex technical systems. 

To implement practically the described scheme is possible using FMM 

subsystems. In terms of the FMM problem (1.5) is written in a form similar to 

(1.6): 

  max ,
k k

k k k
u U

y u B


 , (1.9) 

which immediately follows 

  opt

1k k kB y B
  , (1.10) 

which is quite similar to (1.8), but has the advantage that it is a known 

polynomial of the form (1.2). 

Methods based on the use of FMM is characterized in that before starting to 

solve the optimization problem on (k–1)-th level, it is replaced from the OMM 
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to FMM according to the condition (1.9). Driving multilevel optimization using 

FMM, is very flexible, allowing you to change the setting if necessary 

optimization tasks at any level due to changes in the components of vectors

 ,k k kQ u B . 

1.2.2  A Numerical Method for the Implementation of the Multilevel 

Optimization Approximation Schemes 

The current level of possibilities of computer technology and mathematics 

allow for a new approach to the organization of the block-hierarchical 

representation of the process of optimal design of axial turbine flow path       

(Fig. 1.1) and the information exchange between adjacent levels (Fig. 1.2). The 

essence of this approach lies in the application of the principle of recursion, 

provides automatic bypass facilities at all levels and solution for each object its 

local optimization problem in accordance with a predetermined scenario. 

On the basis of this method created invariant subsystem of recursive     

object-oriented multi-criteria, multi-mode and multi-parameter optimization, 

providing solution of optimization problems, taking into account various types 

of parametric, structural, technological and functional limitations. Designed for 

its optimization techniques are universal, and the search for the optimal solution 

for each object is carried out in accordance with the scenarios of computing 

processes optimization. 

Optimization scripts for all objects of all levels are formed and defined by set 

of components of the following vectors and lists: 

 optX – address list parameters to be optimized; 

 lXmin, lXmax – vectors defining the allowable range of variation of 

parameters to be optimized; 

 lYcq – address list of the object settings and quality criteria; 
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 lYw – object quality criteria weight vector; 

 lYfl – address list of parameters and functional limitations; 

 flMin, flMin – functional limitations permissible change vectors; 

 lYd – address list of settings – parametric constraints; 

 dlMin, dlMin – parametric constraints permissible change vectors; 

 lReg – list of regime (changing during the operation of the facility) 

parameters; 

 sRegim – list of lines with the data on the values of operating parameters 

and the appropriate time of the object for these values; 

 lLine – address list of parameters whose values are changed in the process 

of optimization by linear interpolation between the same type of 

parameters to be optimized nearby objects; 

 optM – method for solving the optimization problem of the local object. 

Forming all the lists, enumerated above, for all level objects and calling a 

recursive function, which includes a set of corresponding optimization 

algorithms, an automatic objects bypass and solving optimization problems for 

each of them is carried out. 

1.3  Building Subsystems FMM 

1.3.1  FMM Basics 

As noted, the FMM is an approximation of the original model, which means 

it can be obtained by statistical processing of the results of numerical 

experiment using OMM. The complexity of solving the equations of the 

original model forces minimize the number of sampling points, which is 

practically achieved by using methods of the theory of experiment design. Get 

the response function in the form (1.2) can, in particular, on the basis of      
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three-level Box and Benken plans [1]. Special selection of sampling points on 

the boundary of the approximation 

 1 1, 1, ,lq l N     (1.11) 

and in its center possible in accordance with the least squares method to obtain 

the values of the coefficients according to (1.2), without resorting to the 

numerical solution of the normal equations. The number of sampling points is in 

the range from 13 at N = 3 to 385 at N = 16. 

Similarly, relations (1.2) can also be obtained by using the three-level saturated 

plans by Rehtshafner [2]. In this case, the dimension of the observation vector 

will vary from 16 at N = 4 to 232 at N = 20. The feature of these plans is that it is 

the most economical plans that require a minimum number of calculations to 

generate a vector of observations, i.e. the number of calculations (experiments) 

equal to the number of the coefficients according to (1.2). 

When creating subsystems FMM quality criteria, should be noted, that at 

lower levels increases the degree of detailed description of the design objects, 

which leads to an increase in the dimension of 
kQ  vectors. If the dimension 

exceeds the permissible (N = 20), or for any reason is limited, for example, due 

to the complexity of OMM, it can be reduced by replacing a number of 

components of the control parameters vector defined by the laws of their change, 

by numbers of the same type subsystems (objects) at the considered design level. 

For example, in the formal macromodelling of the multi-stage turbine flow path 

efficiency, may be appropriate to change the degree of reaction, disposable heat 

drop and so forth linearly from stage to stage. To ensure information 

consistency between FMMs of adjacent levels, in a number of components of 

the vector 
1kQ 

 should be required to include parameters that uniquely 

determine the position of the subsystems in the settings space of a higher k-level. 
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It should be noted that in addressing the increasingly complex,               

multi-parameter, multi-mode and multi-criteria problems of optimal design 

increases the likelihood of multimodal objective functions. 

Using the dependency of the form (1.2) for the approximation of the 

objective functions and functional limitations in this case can lead to a decrease 

in the accuracy and adequacy of the obtained with its help optimal solutions for 

the projected objects or subsystems. 

1.3.2  The Method of Improving the FMM Accuracy 

The analysis of the structure of formula (1.2) shows, that its second term is a 

superposition of the parabola from each independent parameter that mainly 

determines the failure of functions of the form  2

1

n

i i ii i

i

A q A q


  take into 

account the more complex nature of real dependencies, having, for example, 

bends and local extremes. We will use a second member according to (1.2) to 

reflect the independent effect of the parameters on the approximated function, 

and replace it with a more perfect form of addiction. 

It is obvious that in the general case, the shape and structure of dependency, 

reflecting the influence of each parameter, is unique. Given that a priori a kind 

of dependency is not known, to solve this problem and ensure that the principle 

of universality, the second term of the form  2

1

n

i i ii i

i

A q A q


  should be 

replaced with the superposition of interpolation cubic splines. As known, the 

interpolation cubic splines allow with a high degree of accuracy and adequacy 

to describe features of varying complexity, including multi-extremal. Thus, 

taking into account this replacement, the formal macromodel of the form (1.2) 

will be as follows: 
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  
1

0

1 1 12 6

n n n
ij ij

ij ij ij ij ij ij i j

i i j i

c d
y q A a b q q q A q q  



   

   
           

   
  , (1.12) 

where , , ,ij ij ij ija b c d  – cubic spline coefficients of current (j-th) interpolation 

section of the i-th independent variable. For each independent normalized 

variable iq  there are several areas in the interpolation range between –1 and +1; 

ijq  – the distance between the current value iq  and coordinate of the initial 

node of j-th section of the spline, which iq  coordinate value is between the 

initial coordinates of (j-th) and final (j + 1-th) of its nodes. 

Of course, for the coefficients , , ,ij ij ij ija b c d  of dependence (1.12) 

determination additional computational experiment is needed. This experiment 

carried out at the points of a normed space of independent variables iq . The 

length of the interpolation areas and their nodes coordinates are the same for all 

the independent variables. The number of sections is given. The minimum 

required number of sections is four. In this case, an additional calculation of the 

objective functions at four points (1; 0.5; 0.5; 1) by each variable iq  is needed. 

To ensure the principle of an independent effect of each variable, other 

variables in the calculation are assigned by the value 0 ( 0jq  ), which 

corresponds to the center of the accepted range of their changes. It should also 

be noted that in the case of Rehtshafner’s design plans to create more accurate 

FMM of form (1.12) the number of computations by OMM is reduced for each 

independent parameter of FMM by two and equal, accordingly, two, since the 

other two points coincide with the points of the Rehtshafner’s plan and their 

corresponding calculations for OMM performed at the stage of creating a FMM 
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of form (1.2). For clarity, in Fig. 1.3 shows a comparison of the accuracy and 

the adequacy of the approximation of test functions of the form: 

 
2 22 0.1 0.1 sin sinZ X Y X Y     , (1.13) 

by formal macromodel of the form (1.2) and the form (1.12). 

 

a 

  

b c 

Figure 1.3  Comparison of the accuracy of approximation of multimodal function using 

formal macromodel: a – test multimodal function of the form (1.13); b – approximation 

of functions of the form (1.13) using formal macromodel of the form (1.2);  

c – approximation of functions of the form (1.13) using formal macromodel of  

the form (1.12). 
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1.4  Optimization Methods 

1.4.1  General Information About the Extremal Problems 

To solve problems with the single criterion of optimality rigorous 

mathematical methods are developed. 

Direct methods of the calculus of variations – one of the branches of the 

theory of extreme problems for functional – reduce the problem of finding the 

functional extremum to the optimization of functions. 

There are analytical and numerical methods for finding optimal solutions. As 

a rule, the real problems are solved numerically, and only in some cases it is 

possible to obtain an analytical solution. 

Functions optimization using differentiation 

Finding the extremum of the function of one or more variables possible by 

means of differential calculus methods. It’s said that the x  point gives to 

function  f x  local maximum, if there is a number 0   at which from the 

inequality x x    the inequality    f x f x  comes after. 

The function is called one-extremal (unimodal) if it has a single extremum 

and multi-extremal (multimodal), if it has more than one extremum. The point 

at which the function has a maximum or minimum value of all local extrema, 

called a point of the global extremum. 

A necessary condition for an extremum of a differentiable function of one 

variable gives the famous Fermat’s theorem: let  f x  – function of one 

variable, differentiable at the point x . If x  – local extreme point, then 

  0f x  . 
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The points at which this relationship is satisfied, called stationary. The 

stationary points are not necessarily the point of extreme. Sufficient conditions 

for the maximum and minimum functions of one variable – respectively 

  0f x  ,   0f x  . 

Before proceeding to the necessary and sufficient conditions for extrema of 

functions of several variables, we introduce some definitions. 

The gradient of function  f x  is a vector 

 

 

 

1

n

f x

x

f x

f x

x

 
 
 

 
   

 
 
 
  

, 

 T f x  denotes the row vector 

 
   

1

, ,T

n

f x f x
f x

x x

  
   

  
. 

A square matrix of second derivatives 

   

   

   

2 2

2

1 1

2

2 2

1 2

n

n

n

f x f x

x x x

f x h x

f x f x

x x x

  
 

   
   
 
  
 
   

 

is called the Hesse matrix or Hessian of function  f x . 



◆◇     Chapter 1  Statement of the Axial Turbine’s Flow Path Optimal Design Problem     ◇◆ 
 

http://www.sciencepublishinggroup.com 25 

The real symmetric matrix H is called positive (negative) defined if 

 0 0Tx Hx    for every set of real numbers 1 2, , , nx x x , not all of which 

are zero. 

The necessary conditions for that x  – the point of local extremum of n 

variables function  f x , nx E  are as follows: 

1) the function  f x  is differentiable in x ; 

2)   0f x  , that is x  – the stationary point; sufficient conditions for that 

x  – local extreme point, but "1", "2" include the following; 

3) Hessian is positive (negative) determined at the minimum (maximum), i.e. 

 0 0Tx Hx   . 

If the Hessian is positive (negative) defined for all nx E , it is a sufficient 

condition of unimodality of the function. To test matrix A definiteness, 

Sylvester criterion is applied, according to which the necessary and sufficient 

condition for positive certainty are the inequalities: 

11 1

11 12

11

21 22

1

0, 0, , 0

n

n nn

a a
a a

a
a a

a a

   , 

as to the negative certainty 

 
11 1

11 12

11

21 22

1

0, 0, , 1 0

n
n

n nn

a a
a a

a
a a

a a

     . 

Tasks for conditional extremum of function 
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This case involves determining the extremum in an infinite change range of 

variables 1 2, , , nx x x . If optimized function imposed additional conditions 

(restrictions), talk about the problem of conditional extremum. In general, you 

want to find extremum  f x , nx E  under the constraints 

 
 

 

0, 1, , ;

0, 1, , .

j

j

h x j m

g x j p

  


  

 (1.14) 

To solve the problem (1.14) only with restrictions in the form of equations a 

method of Lagrange multipliers is used, which is based on the conduct of the 

Lagrange’s function      
1

,
m

j j

j

L x f x h x 


  , where j  – undetermined 

Lagrange multipliers. We write the necessary conditions for optimality in the 

problem of conditional extremum with equality constraints 

 

 

1

0, 1, , ;

0, 1, , .

m
j

i

ji i i

j

i

hL f
i n

x x x

L
h x j m







  
    

   


   
 


 (1.15) 

It is a system of n + m equations from which can be determined ix , 

1, ,i n , j , 1, ,j m . A rigorous proof of the Lagrange conditions set out 

in the specific manuals. Explain the meaning of the method as follows. On the 

one hand, for all of x which satisfy the constraints   0jh x  , 1, ,j m , 

obviously    ,L x f x  . 

On the other hand, the extreme point of the Lagrange function also satisfies 

these conditions (the second equation (1.14), and therefore, finding an 

extremum  ,L x  , we simultaneously obtain a conditional  f x  extremum. To 
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address the issue of the presence of a stationary point to be a local extremum in 

the problem of conditional extremum, let us expand Lagrange function in a 

Taylor series with a subject to the satisfaction of relations   0jh x  . 

       , ,f x f x L x L x          

 
2

2

1 1 1

1
( )

2

n n m

i i j

i i ji i j

L L
o

x x x
   

  

 
  

  
  , (1.16) 

and according to (1.15) the first term on the right side is zero. The expansion of 

a Taylor series  jh x  in the neighborhood of a stationary point x  yields 

 
2

1

( ) 0, 1, ,
n

j

i

i i

h
o j m

x
 




  


 , (1.17) 

Neglecting terms of higher order, write (1.16), (1.17) in the form 

    
2

1 1 1

1
; 0, 1, ,

2

n m n
j

i j i

i j ii j i

hL
f x f x j m

x x x
   

  


    

  
  . (1.18) 

If from the second equation (1.18) the dependent variables i , 1, ,i m , 

can be expressed through independent k , 1, ,k m n  , then substituting 

them in the first equation (1.18), we obtain a quadratic form relatively 

independent increments 1, ,m n  . The stationary point x  is a local 

conditional minimum (maximum), only if it is positive (negative) defined. 

Optimization with constraints in the form of inequalities 

Classical methods of finding the conditional and unconditional extrema of 

functions discussed above, in some cases, allow to solve problems with 

inequality constraints. 
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Figure 1.4  For extremum determination of the functions of one variable in the interval. 

Let the task of finding the maximum of a function of one variable  f x  on 

the interval a x b  . Using the necessary optimality conditions, we find the 

roots of   0f x   which lie in the interval  ,a b ; We check the suffi-ceent 

conditions for maximum   0f x   and choose the points corresponding to the 

maximum. Also, we compute the function values at the borders of a segment, 

where it can take higher values than the interval (Fig. 1.4). 

We turn now to the case of several variables and consider the optimization 

problem: find a maximum  f x , nx E , subject to the constraints: 

 
  0, 1, , ;

0, 1, , .

j

i

h x j m n

x i n

   


  
 (1.19) 

In the first stage of the solution by the method of Lagrange multipliers, we 

find all stationary points lying in the positive octant of n-dimensional space and 

isolate the maximum points on the basis of sufficient conditions for an 

extremum. Then we explore the positive octant boundary, in turn equating to 

f(x) 

a                                               b  x 

Absolute 

maximum 

Local 

maximums 

Stationary 

points 
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zero in all sorts of combinations of 1, 2, , 1n m   variables, and each time 

solving the optimization problem with equality constraints. As a result of the 

computing process, the complexity of which is obvious, the largest of all the 

extrema should be selected. 

A more general problem, find the maximum 

  f x , nx E  (1.20) 

under constraints   0jh x  , 1, ,j m ;   0ig x  , 1, ,i p , can be 

reduced to just considered by the introduction of additional variables iy , 

1, ,i p , such that 

   0, 0i i ig x y y   . (1.21) 

The extremum can be achieved in a region, where 0iy  , or at its borders, 

where 0, 1, ,iy i p  . Lagrange function for the constrained optimization 

problem (1.20), (1.21) has the form 

        
1 1

, ,
pm

i i m i i i

i i

L x y f x h x g x y   

 

     . 

In the optimum point its partial derivatives by , ,j j jx y   vanish, including 

0, 1, ,m j

j

L
j p

y
 


  


. 

This condition means that if at the point of extremum 0jy  , then 0m j   , 

on the other hand, if 0jy  , that is on the border area 0m j   , as the 

corresponding limit should be considered. Thus, the property 
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0, 1, ,j

j

L
y j p

y


 


 is proved. Obviously, the problem (1.20) and (1.21) 

are completely identical to (1.24) and can be solved in the same way. 

For the problem can be written necessary optimality conditions (generalized 

Lagrange multiplier rule), however, it is rarely used because of the complexity 

of solving the resulting system of equations. 

1.4.2  Nonlinear Programming 

Subject of nonlinear programming 

Nonlinear programming – branch of applied mathematics dealing with 

finding the extremum of function of many variables in the presence of non-

linear constraints in the form of equalities and inequalities, i.e. solution of the 

problem (1.14), discussed in the previous section [3]. 

Classical methods of optimization are part of it, along with disciplines such 

as linear, quadratic, separable programming. However, of the greatest practical 

interest to us are the numerical or direct methods of nonlinear programming, 

especially intensively developed in recent years. 

None of the proposed algorithms is absolutely the best, so the choice of a 

numerical method is dictated by the content of a specific problem, which must 

be solved. Computational methods are classified according to some peculiarity 

of the problem (no restrictions, with equality constraints, inequalities and so on), 

the nature of methods of solutions (e.g., with or without the use of derivatives), 

the type of computers, programming language, and so on. 

Search of one variable function extremum 

A number of methods of finding an extremum of function of many variables 

use as a part the procedure for the one-dimensional optimization. In the case 

then function of one variable is multi-extremal, the only correct method of 
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finding the global extremum is a direct enumeration of a number of values with 

some step in its change. 

Obviously, the function can vary sharply, the smaller should be chosen the 

grid. After a rough determination of the neighborhood of extremum, begin to 

search its exact value. For this purpose, one-dimensional algorithms for 

searching the extremes of unimodal functions in a given interval are used. 

One of the most effective methods is the so-called golden section. Recall that 

if a segment divided into two parts, so that the ratio of the lengths at a greater 

relative length equal to the length of most of all segment, obtain the so-called 

golden ratio (is approximately 0.38: 0.62). Golden section method just based on 

the multiple division of uncertainty interval, i.e. the interval in which the 

extremum enclosed in an appropriate ratio. 

Suppose that in some approximation known interval i  in which the function 

extremum exists. Divide it by points 1 2,i iy y  in the proportion of the golden 

section. If 2 1

i iy y  we discarded 2

ix , indicating 
1

2 2

i ix y   a segment 1i   share 

in the proportion of the golden section, and so on. To reduce the range of 

uncertainty in the 100 times 11 calculations is required, in the 10000 times –  

21 calculations. For comparison, the bisection method (dichotomy) leads to a 

corresponding narrowing of the range of 14 and 28 function evaluations. 

The advantage of the golden section is that it works equally well for smooth 

and non-smooth functions. It was found that, in the case of smooth functions by 

a polynomial approximation possible to quickly determine the number of 

extreme at the same accuracy as that by the golden section. 

If the optimized function is defined and unimodal on the entire real axis, there 

is no need to worry about selecting the initial uncertainty interval. For example, 

in the method of Davis, Sven and Campy (abbreviated as DSC), from a certain 
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point, it becomes increasing steps until extremum is passed, and then made 

quadratic interpolation on the basis of information about the functions in the 

past three points is determined extremum of the interpolation polynomial. 

The Powell’s algorithm of quadratic polynomial interpolation is carried out 

in three arbitrary points, approximate extremum is found, dropped one of the 

four points and the procedure is repeated until convergence. The most effective 

is a combination of the described algorithms, or the so-called method of     

DSC-Powell. In accordance with this first algorithm DSC sought interval in 

which the extremum, three points are selected and carried there through 

parabola. Approximate value at an extremum is calculated as in the method of 

Powell: 

           

           

2 2 2 2 2 2

2 3 1 3 1 2 1 2 3

2 3 1 3 1 2 1 2 3

1

2

x x f x x x f x x x f x
x

x x f x x x f x x x f x

    


    
. 

If the value of the function at the point x


 of optimum values  1f x ,  2f x , 

 3f x  differ by less than a predetermined accuracy, complete calculations, 

otherwise discard the worst of the points 1 2 3, , ,x x x x , and carry out a new 

parabola. For functions that are sufficiently close to quadratic efficiency      

DSC-Powell is very high: as a rule, the decision to an accuracy 
510

…
610

 is 

achieved 6–8 calculations of the objective function. 

Methods for unconstrained optimization 

Consider the problem of finding the maximum of a function of several 

variables without restrictions. Find maximum  f x , nx E . One of the most 

famous is the gradient methods to solve this problem. They are based on the fact 

that the promotion of the objective function to the extreme in the space nE  

made by the rule 
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 1k k kx x x   . (1.22) 

There kx  – transition vector from point kx  to the point 
1kx 
, k k kx s  , 

where ks  – the unit vector in the direction kx ; k  – a scalar. 

Vector ks  sets another search direction and k  – the length of a step in this 

direction. Obviously, k  should be chosen so as to move as close as possible to 

the extreme. Various methods of selecting the direction of the search are used. 

The simplest of these is that the movement of the point kx  is made in the 

direction of the greatest magnification of  kf x , i.e. in the direction of a 

gradient function at a given point. 

According to this method, called the method of steepest descent, 

 

 
k

k

k

f x
s

f x





, 

where  
 

2

1

n
k

k

i i

f x
f x

x

  
   

 
 , and the formula of the transition from kx  to 

1kx   has the form 

 
 

 
1

k

k k k

k

f x
x x

f x



 


. (1.23) 

Consider a geometric interpretation of the steepest descent method in the case 

of two variables. Transition from formula (1.21) does not allow to come to a 

point extremum by one step; the procedure should be repeated many times until 

it reaches a maximum, i.e., conditions 0f   are fulfilled. Partial derivatives 

of the function calculation at points generally performed numerically. Search 

step, you can select a constant, but it is better to define it in terms of 
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 max
k

k k kf x s


  

using the previously discussed methods of one-dimensional search. 

The theory shows, and the practice of calculation confirms that the steepest 

descent method is not very effective in cases where the level curves of the 

objective function is strongly stretched, i.e. there are deep ravines while 

searching a minimum or ranges when searching maximum. The steepest descent 

direction is almost orthogonal to the best direction of the search, as a 

consequence, the optimal step reduced all the time, and the algorithm "get 

stuck" without reaching the extreme. The way out of this situation can be a 

scaling of variables, at which the level lines would get kind of close to the circle. 

In order to reduce the amount of computations of the objective function, 

associated with a numerical definition of partial derivatives, sometimes used 

method of coordinate descent, which is also called a relaxation or Gauss-Seidel 

method. Let ie  – axis ix  unit vector, and  1, , nx x x  – the starting point of 

the search. One iteration of coordinate descent is to take steps: 1k k k kx x e   , 

1, ,k n . 

Step as in the method of steepest descent is determined by the condition 

 max
k

k k kf x s


 . The Gauss-Seidel method suffered from the same flaw as the 

steepest descent method, – a bad convergence in the presence of ravines. 

One way to overcome the computational difficulties associated with the gully 

structure of the objective function involves the use of information not only on 

its first derivative, but also higher order, contained in the second partial 

derivatives. An arbitrary function can be represented by its quadratic expansion 

in a Taylor series in the neighborhood of point x: 
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         
1

2

T Tf x x f x f x x x H x x       . 

The minimum in the direction x  is obtained by differentiation for each of 

the components of the vector x , which gives 

    1x H x f x    . (1.24) 

If we substitute (1.23) into (1.21), we obtain an expression for the minimum 

point of the quadratic function 

    1x x H x f x   . (1.25) 

In the case where the objective function from the outset is a quadratic, the 

optimum point is found by one step, but if the function is arbitrary, this fails to 

achieve the minimum and should be repeatedly use the formula (1.25): 

    1

1k k k kx x H x f x

    . (1.26) 

Even better, by analogy with gradients instead of (1.25) to use the relation 

 
   

   

1

1 1

k k

k k k k k k

k k

H x f x
x x s x

H x f x
 



 


   


, (1.27) 

and the step k  choose from the  kkk sxf
k




min  minimum condition. 

Equations (1.26) or (1.27) are applied iteratively until the end calculation 

process criterion is reached, called Newton’s method. Difficulties of using 

Newton algorithm associated, firstly, with Hessian matrix inversion, and 

secondly, with the computation of the second partial derivatives, which restricts 

its practical use. 

The methods of conjugate directions are without drawbacks of gradient 

methods and have the convergence rate close to Newton’s method. At the same 

time, they are the methods of the first order, as the gradient. Positive defined 
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quadratic form of n variables is minimized conjugate gradient method for no 

more than n steps. The conjugate gradient method is suitable for minimization 

of non-quadratic functions, only when they are iterative. 

Two vectors x, y in the space nE  called conjugate relative to the matrix H, if 

0Tx Hy  . Consider the quadratic function of the n variables 

  
1

2

T Tf x a x b x Hx    (1.28) 

with a positive defined matrix H. Let’s apply for function  f x  minimization 

iterative process 1k k k kx x s   . The direction of descent to k-th step is one of 

the vectors of conjugate vectors 0 1 1, , , ns s s  . If you select k  from the 

minimum of  k k kf x s , i.e. 
( )k k k

k

f x s



 


, that, differentiating by step 

(1.27), we obtain 

 
 T

k

k T

k k

f x s

s Hs



  . (1.29) 

Applying the formula (1.28), (1.29), on n -th step of the iterative process will 

find 

 
 1 1

0 0

0 0

Tn n
k

n k k T
k k k k

f x s
x x s x

s Hs


 

 


     . (1.30) 

We can say that the point nx  is the exact minimum of the function  f x , i.e. 

1

nx x H b   , which means that the process (1.30) with the choice of k  by 

(1.28) does give the opportunity to find the minimum of a quadratic function by 

n steps. 
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There are different ways of constructing conjugate directions. In particular, 

Fletcher and Reeves proposed a method, called the conjugate gradients method, 

according to which the subsequent direction of the search is a linear 

combination of the direction of steepest descent and the previous direction, i.e., 

   1 1k k k ks f x s     . (1.31) 

As the initial search direction  0 0s f x   is chosen. The weighting factors 

1k   are determined so that the directions 0 1 1, , , ns s s   were conjugated. It can 

be shown that 

 

 

2

1 2

1

k

k

k

f x

f x
 







. 

Since the direction of the search is conjugated to a quadratic function, the 

Fletcher-Reeves method leads to the solution of no more than n steps. In the 

case of an arbitrary function is recommended after every n steps "upgrade" the 

search direction by setting  n ns f x   and repeat the process (1.30) with 

replacement of 0x  to nx . 

Some methods do not use the derivatives of functions, and the optimization 

direction in which tis determined only on the basis of successive calculations of 

the objective function. In cases where the determination of the objective 

function derivatives is difficult, search algorithms may be preferable. In the 

case of one-dimensional analogue of the search method is the method of golden 

section, and the method of using derivatives – DSC-Powell method. 

Methods of optimization with constraints 

In addition to the previously described method of Lagrange multipliers for 

finding the extremum of functions with restrictions a number of numerical 
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methods developed. The first approach to the construction of algorithms for 

constrained optimization is monotonous motion to the optimum of the objective 

function and at the same time striving to meet the exact or approximate limits. 

Methods of this type are numerous, but the complexity, lack of flexibility and a 

large amount of computational work limit their use in practical calculations. 

More elegant, easy to implement and effective the methods based on the 

reduction of problems with constraints to the solution of a sequence of 

unconstrained optimization – the so-called penalty function methods. There are 

several variations of these methods. 

Let’s begin their consideration with the interior point method for problems 

with inequality constraints: 

find the maximum  f x , nx E  

with restrictions    0, 1, ,jg x j p  . (1.32) 

To determine the conditional extremum built the so-called attached objective 

function  

    
 

*

1

1
,

p

k k k

j j

I x f x
g x

 


   , (1.33) 

where k  – a number, called penalty factor; 
 1

1p

j jg x

  – penalty function. 

The algorithm for solving the problem (1.32) is the following: allowable point 

0x  at which everything  0 0jg x   is selected, and a monotonically decreasing 

sequence of positive penalties k ; for every 1, 2, ,k   starting with the point 

1kx  , it solves the problem of unconstrained optimization function (1.33). 
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If for every k it is possible to find the maximum of 
*

kI  by x, the sequence 

 kx  converges to the solution of the problem (1.33). 

The organization of numerical maximum search of (1.29) must be such that 

the point does not leave the feasible region. This shortage is deprived the 

external penalty function method, which for the problem of the form (1.33) 

involves the construction of the associated objective function 

       
2

*

1

,
p

k k k j

j

I x f x g x  



   , (1.34) 

Where     min 0,j jg x g x  . 

Thus, inside the allowable region, where   0jg x  ,   0jg x  , and 

   j jg x g x   outside. 

In contrast to (1.33), the function (1.34) is defined for all nx E . 

The algorithm for solving the problem is as follows: take an arbitrary point 

0x , and monotonically increasing sequence of numbers k  ; for

1, 2, ,k   starting from 1kx  , it solves the problem of unconstrained 

optimization function (1.34), with the result that is determined the new 

approach kx . 

It can be shown that the sequence of points kx  converges to the solution of 

the problem (1.33), but in contrast to the interior point method to the extreme 

movement takes place outside the feasible set, and is taken from the name of the 

method of exterior penalty functions. This method is also applicable to the 

general problem of nonlinear programming (1.14), for which used attached 

objective function 
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         
2

* 2

1 1

,
pm

k k k j j

j j

I x f x h x g x  

 

 
   

 
  . (1.35) 

Algorithm of solution is the same as for the problem (1.34). 

The solution of nonlinear programming problems with constraints using 

penalty function method is complicated by the fact that as the penalty function 

coefficient is increasing, (1.35) expressed gully structure. As previously shown, 

not all the methods of unconditional optimization solution can cope with such 

problems, and therefore the choice of the method of finding the extremum of the 

attached objective function is of fundamental importance. 

An important role is also played the strategy of the penalty factor change, 

because if you choose it immediately large, constraints of the problem satisfied 

well, but the objective function does not improve. In contrast, if too small 

values of k , motion occurs in the direction of improvement of the objective 

function, but practically does not take into account the constraints that can lead 

to failure in the nE  areas where the objective function and constraints are not 

defined. 

For example, if in the objective function or in limitations members of the 

form ax  are present, it is unacceptable entering the zone 0x  . Get rid of the 

zone uncertainty, resulting in the computer calculations for emergencies can 

sometimes be the introduction of a suitable change of variables. In particular, to 

meet conditions 0x   the replacement zx e  is suitable, which already 1z E . 

If such a reception is impossible, it should be carefully selected constants of 

unconditional search methods as the length of the step in the direction of 

descent, change of this step in the process to find a one-dimensional vector of 

variables did not leave the area where the objective function and constraints of 

the problem identified. 
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In conclusion, we consider the possibility of nonlinear optimization methods 

usage in order to solve systems of nonlinear equations. Suppose that in the 

problem (1.14) there are no restrictions in the form of inequalities, and the 

number of variables equal to the number of restrictions in the form of equations, 

i.e., in fact, the task of solving the system of m equations with m unknowns. We 

form the function 

  * 2

1

m

j

j

I h x


   (1.36) 

and find its maximum. If the system of equations   0jh x  , 1, ,j m , has a 

solution, then, obviously, at the same time with the maximum of *I  is the root 

of the system of equations. In particular, if the functions  jh x  are linear, 

function (1.36) is obtained quadratic and can be effectively solved by Newton’s 

and conjugate gradient method. 

Replacement of the problem of systems of linear equations solution to 

extremum problems is justified in cases where the matrix of the system is       

ill-conditioned (e.g., in the problem of approximation by least squares) and can 

not be solved by conventional methods, in particular, by process of elimination. 

The values  jh x  in (1.35) are called residuals, and the solution of nonlinear 

equations is replaced by minimizing the sum of squared residuals. 

1.4.3  Methods for Optimization of Hardly Computable Functions 

In some problems, when the calculation of the value of the objective function 

may take minutes, hours or even days of the computer, the range of acceptable 

methods of optimization significantly narrowed. 

These problems, in particular, include aerodynamic optimization of turbine 

blades using CFD. 
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The Nelder-Mead method (Nelder A.-Mead R.), also known as the flexible 

polyhedron method or the simplex method is a method of unconditional 

optimization of functions of several variables. Without requiring computation of 

the gradient function, it is applicable to non-smooth, noisy functions, and is 

particularly effective in small (up to 6) number of variable parameters. Its 

essence lies in the follow-successive movement and deformation of the simplex 

around the point of extreme. The method is a local extremum and can "get 

stuck" in one of them. If you still need to find a global extremum, one can try to 

select other initial simplex. 

A more developed approach to the exclusion of local extrema offered 

algorithm based on the Monte-Carlo method, as well as evolutionary algorithms. 

The genetic algorithm (GA) – is a global search heuristic method, used to 

solve optimization problems and modeling, by random selection, combination 

and variation of the required parameters with the use of mechanisms that 

resemble biological evolution. GA usage assumes its careful adjustment on 

special test functions, which, however, does not guarantee the effectiveness of 

the algorithm and the accuracy of decisions of the function. 

This algorithm is well suited to the study of noisy functions, but requires a 

large number of CFD – calculations and therefore more time on optimization. 

The last forcing researchers to use coarse meshes and not quite accurate, but 

easily calculated turbulence models, which will inevitably leads to loss of the 

numerical calculations precision. 

Monte-Carlo (random search) methods allows you to find the extremes of 

multimodal and noisy functions; use various constraints during optimization; is 

particularly effective when a large number of variable parameters; requires 

careful adjustment for test functions; it is one of the most common methods of 

optimization and solution of various problems in mathematics, physics, 

economics, etc. However, the method requires tens of thousands of the objective 
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function computing and practically not applicable for direct optimization based 

on CFD – calculations. To improve the efficiency of random search used    

quasi-random sequence of numbers (LP [4] Sobol), Faure, Halton et al.). 

Increased efficiency is achieved by eliminating clustering that occurs in a 

random search that is by more even distribution of points in the search study 

area of the function extremum. 

Recently, in the optimization algorithms the methods of experiment planning 

are widely used. Using the methods of the theory of experimental design 

(Design of the Experiment – DOE), the original mathematical model can be 

approximated by a quadratic polynomial. One of the relevant planning schemes 

of the experiment described in Section 1.3. These quadratic polynomials can be 

used to further optimization with the use of a universal and reliable global 

search method using a quasi-random sequences. 

1.5  The Practice of Numerical Methods Usage for Local 

Leveled Optimization Problems Solution 

To solve demanded by practice of axial turbines design multi-criteria 

problems, multi-parameter and multi-mode optimization of the multistage flow 

path further development and improvement of appropriate numerical methods 

and approaches required. 

It should be noted some features of numerical solution of problems related to 

the optimization of design objects based on their modes of operation, 

multimodal objective functions, as well as issues related to the multi-objective 

optimization problems. 

Some aspects of the above problems solutions are given below. 
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1.5.1  Solution of the Multi-Criteria Optimization Problems 

Set out in section 1.4 are the basic optimization techniques. However, 

depending on the formulation of the optimization problem, as well as the 

selected design object there are some features of numerical implementation of 

these methods and their applications. 

It is known that the actual design object is usually characterized by a number 

of quality indicators and improvement in one of them leads to a deterioration in 

values of other quality criteria (Pareto principle). In such cases it is necessary to 

consider the optimization problem from many criteria. 

The authors offer a well-established practice in solving multi-objective 

optimization problems – "convolution" of partial objective function weighted by 

i  depending on the importance of a particular quality criteria in a 

comprehensive quality criteria based on the following 

     
2

* *

1

, ,
n

d p i i d p

i

Y x x Y x x


  , (1.37) 

where *

iY  – the components of the vector criterion (partial indicators of quality 

of the object); ,d рx x  vectors of design parameters and operational parameters, 

respectively, which together define a design decision. 

In fact, (1.37) is the magnitude of the partial criteria of quality, taking into 

account their weights ( i ). 

Thus, in the n-dimensional normalized criterial space each variant of 

definitely best design object is characterized by a corresponding so-called 

Pareto point, whose distance to the center of coordinate proportional to the 

value of the module  * ,d pY x x  of vector quality criterion. 
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The experience of steam turbines cylinder optimization with the flow 

extraction for the purposes of regeneration and heating shows that there is 

needed to consider at least two criteria of quality – the efficiency of the flow of 

the cylinder and the power, generated by them. 

1.5.2  The Numerical Solution of the Optimization Problem with the 

Multimodal Objective Function 

In some cases it is necessary to check the objective function on multimodality. 

In the developed subsystem of multi-criterial and multi-level multi-parameter 

optimization of design objects to find the optimal solution the search is always 

performed in two stages whether unimodal or multimodal objective function. 

Thus, the first (preliminary) stage is used to determine suspicious extremum 

points, to find which method is used ideas swarm (Bees Algorithm), the first 

work of which were published in 2005 [5, 6]. The method is an iterative 

heuristic multi-agent random search procedure, which simulates the behavior of 

bees when looking for nectar. 

The criterion for the selection of points and their respective sub-areas, in 

which will be specified by the relevant decision of optimization problems, is the 

Euclidean distance ab a bR x x   in the space of optimized parameters between 

the compared points from the set LP sequence. 

If the Euclidean distance abR  between two points of LP sequence  ,a bx x , 

less than some fixed value setR , then point with the large value of the objective 

function is selected. 

Criteria evaluation for quality and functional limitations at the preliminary 

stage is performed by using FMM (of the form (1.2) or (1.12)). After processing 
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all of the set of LP sequence points by a "swarm" algorithm suspicious 

extremum point are defined. 

These points are then used as initial approximations of the final (refining) 

stage of the optimal solution finding. When refining the optimal solutions 

around the extremum suspicious spot, in a recursive optimize algorithm it is 

provided the transition from the evaluation criteria of quality and functional 

limitations by using FMM to their evaluation by appropriate OMM. It uses a 

method of coordinate descent or conjugate gradient method, for example, 

Fletcher-Reeves. Thus found several points of local optima are sorted by the 

value of the objective function, and the best solution given the status of optimal. 

1.5.3  The Method of Optimization Taking into Account Turbine 

Operating Modes 

The above (1.37) convolution vector type of the objective function allows to 

take into account the specific feature of the problem of optimal design of 

facilities intended for use as a constant, and the variable modes. In the case of 

optimization taking into account the variability of operating loads,           

function (1.37), on the one hand, carries information about the overall 

effectiveness of the design in all modes of operation, and on the other hand, it 

emphasizes the Pareto signs of the competitive effect of 'individual' quality 

criteria for each of the operating modes on the final result. 

Below is a description of the developed method, which provides the solution 

of problems of optimum design of turbomachinery, operated at a predetermined 

range of modes. 

This method is based on the integration of formal macromodels of the 

objective functions. 

When included in the examination of the alleged operation modes, created 

FMM criteria of quality and functional limitations are functions of the design 
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and operational parameters. Ranges of change of regime parameters are selected 

in accordance with the proposed schedule changes and they do not change in the 

course of iterations to refine the optimal solutions. 

Such FMM usage at the step of finding the optimal solutions necessitates 

multiple evaluation of quality criteria and functionality limitations for each 

sampling point (corresponding to a combination of structural parameters), the 

number of calculations of each FMM considered equivalent to the number of 

operating modes. Obviously, the increased number of calculations requires 

additional computing resources in the search for the best design. 

The decision of the problem marked can be achieved by eliminating the 

regime parameters of the vector of varied FMM parameters (1.2). To eliminate 

the regime parameters it is necessary to carry out the FMM integration. In this 

case, the new FMM coefficients of integral quality criterion obtained from the 

following relationship: 

   
1 1

0

1 1 1 10

c m c cN N N N

i i j j ik i k

i j i k i

Y q A A q A q t dt A q q

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1

2 2

1 1 0

c mN N

ii i jj j

i j

A q A q t dt
 

    , (1.38) 

where ,c mN N  – numbers of structural and operational parameters, respectively; 

t – time. 

The new FMM of form (1.38) contains integrals of regime parameters, which 

can be calculated from the charts of regime parameters   jq t  and converted 

to the form: 

    
1

2

0

1 1 1

c c cN N N

m m im i ii i ik i k

i i k i

Y q A A q A q A q q


   

      , (1.39) 
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where 
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 (1.40) 

FMM form (1.39) is more convenient to use in the optimization algorithms 

for quality criteria and functional constraints evaluation, as presented 

macromodel depends only on the design parameters that do not change their 

values when changing the operating mode of the FP. Thus, the account of the 

expected schedule change duty operation is performed due to the fact, that the 

operating parameters are integrally included in the new coefficients FMM 

(1.40). 
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