International Journal of Genetics and Genomics

Submit a Manuscript

Publishing with us to make your research visible to the widest possible audience.

Propose a Special Issue

Building a community of authors and readers to discuss the latest research and develop new ideas.

Molecular Evolution of Key Receptor Genes in Primates and Non-Human Primates

African primates remain an unexplored source of information required to complete the origin and evolution of many human pathogens. Current studies have shown the importance of several receptor human genes implicated in host resistance or susceptibility to tuberculosis. The validation of these genes in Mycobacterium tuberculosis infection makes them an excellent model system to investigate the mode of selective pressures that may act on pathogen defense genes. To trace the evolutionary history of these genes, the report describes preliminary results for eight receptors human genes having either a significant or a possible association with Tuberculosis (TB). By using a combination of maximum likelihood approaches, evidence of positive selection were detected for four genes. The analysis between species, nevertheless, shows a clear pattern of nucleotide variation mostly compatible with purifying selection.

Receptor Genes, Tuberculosis, Phylogeny, Non-Human Primates, Adaptive Evolution

Barbara Picone, Alan Christoffels. (2014). Molecular Evolution of Key Receptor Genes in Primates and Non-Human Primates. International Journal of Genetics and Genomics, 2(4), 57-61.

1. R. Alfonso, RE. Romero, A. Diaz, N. Calderon, G. Urdaneta, J. Arce, ME. Patarroyo, MA. Patarroyo, “Isolation and identification of mycobacteria in New World primates maintained in captivity”. Vet. Micro. Vol. 98, pp. 285–295, 2004
2. SV. Capuano, DA. Croix, S. Pawar, A. Zinovik, A. Myers, PL. Lin, S. Bissel, C. Fuhrman, E. Klein, JL. Flynn, “Experimental Mycobacterium tuberculosis infection of cynomolgus macaques closely resembles the various manifestations of human M. tuberculosis infection”. Infect. Immun. Vol. 71, pp. 5831–5844, 2003
3. JL. Flynn, SV. Capuano, D. Croix, S. Pawar, A. Myers, A. Zinovik, E. Klein, “Non human primates: a model for tuberculosis research”. Tuberculosis Vol. 83, pp.116-118, 2003
4. MC. King, AC. Wilson, “Evolution at two levels in humans and chimpanzees”. Science Vol.188, pp. 107–116, 1975
5. MV. Olson, A. Varki, “Sequencing the chimpanzee genome: Insights into human evolution and disease”. Nat. Rev. Genet. Vol. 4, pp. 20–28, 2003
6. M. Möller, EG. Hoal, “Current findings, challenges and novel approaches in human genetic susceptibility to tuberculosis”. Tuberculosis Vol.90, pp. 71-83, 2010
7. P. Andolfatto, “Adaptive evolution of non-coding DNA in Drosophila”. Nature Vol. 437, pp. 1149–1152, 2005
8. I. Ebersberger, D. Metzler, C. Schwarz, S. Paabo, “Genome wide comparison of DNA sequences between humans and chimpanzees”. Am. J. Hum. Genet. Vol. 70, pp. 1490-1497, 2002
9. I. Hellmann, I. Ebersberger, SE. Ptak, S. Paabo, M. Przeworski, “ A neutral explanation of AIF decreases mithocondrial oxidative phosphorylation and protects from obesity and diabetes”. Am. J. Hum. Genet. Vol.72, pp. 1527–1535, 2003
10. J. Shi, H. Xi, Y. Wang, C. Zhang, Z. Jiang, K. Zhang, Y. Shen, L. Jin, W. Yuan, J. Lin, Q. Hua, F. Wang, S. Xu, S. Ren, G. Zhao, Z. Chen, W. Huang, “Divergence of the genes on human chromosome 21 between human and other hominoids and variation of substitution rates among transcription units”. Proc Natl. Acad. Sci. U S A Vol. 100, pp. 8331-8336, 2003
11. MW. Karaman, ML. Houck, LG. Chemnick, S. Nagpal, D. Chawannakul, D. Sudano, BL. Pike, VV. Ho, OA. Ryder, JG. Hacia “Comparative analysis of gene-expression patterns in human and African ape cultured fibroblasts”. Genome Res. Vol.13, pp.1619-1630, 2003
12. K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, S. Kumar, “MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods”. Mol Biol. Evol. Vol. 28, pp. 2731-2739, 2011
13. Z. Yang, “PAML 4: phylogenetic analysis by maximum likelihood”. Mol Biol Evol. Vol.24, pp. 1586-1591, 2007
14. R. Nielsen, ZH. Yang, “Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene”. Genet. Vol. 148, pp. 929–936, 1998
15. SKL. Pond, SDW. Frost, “Site-to-site variation of synonymous substitution rates”. Mol. Biol. Evol. Vol. 22, pp. 2375-2385, 2005
16. T. Massingham, N. Goldman, “Detecting amino acid sites under positive selection and purifying selection”. Genet. Vol.169 (3), pp. 1753-1762, 2005
17. MT. Hamblin, EE. Thompson, A. Di Rienzo, “Complex signatures of natural selection at the Duffy blood group locus”. Am. J. Hum. Genet. Vol. 70, pp. 369-383, 2002
18. EJ. Vallender, BT. Lahn, “Positive selection on the human genome”. Hum. Mol. Genet. Vol.13, pp. 245-254, 2004
19. RJ. Woo, S. Kim, SE. Shoelson, S. Park, “X-ray Crystollographic Structure of TIR Domain from the human TIR-Domain containg adaptor protein/MyD88-Adaptor-like protein (TIRAP/MAL)”. Bull. Korean Chem. Soc. Vol. 33, pp. 3091-3094, 2012
20. DJ. Thiel, MH. le Du, RL. Walter, A. D’Arcy, C. Chene, M. Fountoulakis, G. Garotta, FK. Winkle, SE. Ealick, “Observation of an unexpected third receptor molecule in the crystal structure of human interferon-γ receptor complex”. Structure Vol.8, pp. 927-936, 2000