| Peer-Reviewed

Polygonatum Kingianum Genome Size Estimation by Flow Cytometry

Received: 7 October 2022    Accepted: 1 November 2022    Published: 4 November 2022
Views:       Downloads:
Abstract

Polygonatum kingianum, an herb of Polygonatum in Liliaceae, is a kind of Chinese herbal medicine with homology of medicine and food. Polygonatum kingianum has extensive scientific research, but its genome size is seldom studied. In order to enrich the genome data of P. kingianum, this study was based on flow cytometry to detect P. kingianum collected from different areas and estimate its genome size. We use corn as the internal reference plant and rice as the internal reference plant to correct the data, and control the CV value below 5.0% to ensure the accuracy of the results. The results showed that the genome size of P. kingianum was about 6.90±0.41 pg. Moreover, high-quality results have CV values of approximately 1.0%–2.0%, and the conventional results have CV values of approximately 3.0%. The average coefficient of variation in this study is 2.5%-3.5%; therefore, the genome size of the three populations in this study has high reliability. In a word, this study provides the first estimate of the genome size of P. kingianum. In the future, these results can be used to establish sequence data and provide a basis for determining the whole genome of P. kingianum. Moreover, these results provide a basis for selecting research materials for future work on P. kingianum genetic evolution and molecular breeding.

Published in Journal of Plant Sciences (Volume 10, Issue 6)
DOI 10.11648/j.jps.20221006.11
Page(s) 203-208
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Flow Cytometry (FCM), Genome Size, Polygonatum Kingianum

References
[1] Chen W., L. Kui, G. H. Zhang, S. S. Zhu, J. Zhang, X. Wang, M. Yang, H. C. Huang, Y. X. Liu, Y. Wang, Y. H. Li, L. P. Zeng, W. Wang, X. H. He, Y. Dong and S. C. Yang. 2017. Whole-genome sequencing and analysis of the Chinese herbal plant Panax notoginseng. Mol. Plant., 10 (6): 899-902.
[2] Chen X. R., C. J. Wang, L. X. Li and Z. C. He. 2002. The study advances of pharmacology and chemical compositions on Polygonatum kingianum. Lishizhen. Med. Mater. Med. Res., 13 (9): 560-561.
[3] Yu H. S., B. P. Ma, L. P. Kang, T. Zhang, F. J. Jiang, J. Zhang, P. Zou, Y. Zhao, C. Q. Xiong, D. W. Tan, X. B. Song and K. Yu. 2009. Saponins from the processed rhizomes of Polygonatum kingianum. Chem. Pharm. Bull., 57 (9): 1011.
[4] Zeng G. F., Z. Y. Zhang, L. Lu, D. Q. Xiao, C. X. Xiong, Y. X. Zhao and S. H. Zong. 2011. Protective effects of Polygonatum sibiricum polysaccharide on ovariectomy-induced bone loss in rats. J. Ethnopharmacol., 136 (1): 224-229.
[5] Debnath T., S. R. Park, H. K. Da, J. E. Jo and B. O. Lim. 2013. Antioxidant and anti-inflammatory activity of Polygonatum sibiricum, rhizome extracts. Asian. Pac. J. Trop. Dis., 3 (4): 308-313.
[6] Su. W., L. Zhao, J. T. Liu, H. L. Chen and Z. Q. Gong. 2007. Study on bacteriostasis and anti-oxidation of Polyonatic sibiricum polysaccharides. Food Sci., 28 (8): 55-57.
[7] Gu H. M., Y. W. Meng and Q. Pu. 2003. Polysaccharide from Polygonatum cyrtonema hua against herpes simplex virus in vitro. Chin. J. App. Environ. Bio, 9 (1): 21-23.
[8] Geng Z. Y., W. P. Xu, W. Wei, C. Chen and T. J. Xu. 2009. Effects of saponins of Rhizoma polygonati on behaviors and monoamine neuro-transmitters in mice depression model. Chin. J. New Drugs, (11): 1023-1026.
[9] Duan H., B. Q. Wang and Y. W. Zhang. 2014. Anti-tumor effects and mechanism of rhizoma polygonati polysaccharide on H22 tumor bearing mice. Tradit. Chin. Drug Res. Clin. Pharm., 25 (1): 5-7.
[10] Hirai N., T. Miura, M. Moriyasu, M. Ichimaru, Y. Nishiyama, K. Ogura and A. Kato. 1997. Cardiotonic activity of the rhizome of Polygonatum sibiricum in Rats. Biol. Pharm. Bull., 20 (12): 1271-3.
[11] Ren H. Y., Y. Y. Wang, Y. Zhang, C. M. Xue, H. L. Ren and H. B. Li. 2006. Influence of Polygonatum sibiricum polysaccharide on the life spans of silkworm. Shandong J. Tradit. Chin. Med., 25 (3): 200-202.
[12] Zhang F., J. G. Zhang, L. H. Wang and D. X. Mao. 2008. Effects of Polygonatum sibiricum polysaccharide on learning and memory in a scopolamine-induced mouse model of dementia. NRR, 3 (1): 33-36.
[13] Lu J. M., Y. F. Wang, H. L. Yan, P. Lin, W. Gu and J. Yu. 2016. Antidiabetic effect of total saponins from Polygonatum kingianum in streptozotocin-induced daibetic rats. J. Ethnopharmacol., 179: 291-300.
[14] Zhang T. T., X. K. Xia, C. P. Chen, A. P. Wu, M. He and L. W. Nie. 2006. Biological activities of polysaccharides from Polygonatum sibiricum redoute. Chin. J. Exp. Tradit. Med. Form., 12 (07): 44-47.
[15] Wu L. H., G. Y. Lu, P. Li, Y. L. Zhang, J. Su, and S. H. Chen. 2014. Study on effect of Polygonatum sibiricum on yin deficiency model rats induced by long-term overload swimming. Chin. J. Chin. Mat. Med., 39 (10): 1886.
[16] Yan L., Wang X., Liu H., Y. Tian, J. M. Lian, R. J. Yang, S. M. Hao, X. J. Wang, S. C. Yang, Q. Y. Li, S. Qi, L. Kui, M. Okpekum, X. Ma, J. J. Zhang, Z. L. Ding, G. J. Zhang, W. Wang, Y. Dong and J. Sheng. 2015. The genome of Dendrobium officinale illuminates the biology of the important traditional Chinese orchid herb. Mol. Plant., 8 (6): 922-934.
[17] Yang J., G. H. Zhang, J. Zhang, H. Liu, W. Chen, X. Wang, Y. H. Li, Y. Dong and Yang S. C. 2017. Hybrid de novo genome assembly of the Chinese herbal fleabane Erigeron breviscapus. Gigascience., 6 (6): doi: 10.1093/gigascience/gix028.
[18] Zhang J. P., Q. J. Song, P. B. Cregan and G. L. Jiang. 2016. Genome wide association study, genomic prediction and marker-assisted selection for seed weight in soybean (Glycine max). Theor. Appl. Genet., 129: 117-130.
[19] Freitas N. M., T. N. Pereira, I. G. Geronimo, A. O. N. Azevedo, S. R. R. Ramos and M. G. Pereira. 2016. Coconut genome size determined by flow cytometry: Tall versus Dwarf types. Genet. Mol. Res., 15 (1): gmr.15017470.
[20] Kuo L. Y., Y. J. Huang, J. Chang, W. L. Chiou and Y. M. Huang. 2017. Evaluating the spore genome sizes of ferns and lycophytes: a flow cytometry approach. New Phytol, 213 (4): 1974.
[21] Swathi A., M. S. Shekhar, V. K. Katneni and K. K. Vijayan. 2018. Genome size estimation of brackishwater fshes and penaeid shrimps by flow cytometry. Mol. Biol. Rep., https://doi.org/10.1007/s11033-018-4243-3.
[22] Wang Y. P., B. Y. Xiao, W. B. Xiong, S. D. Wu, A. J. Ji and L. X. Duan. 2018. Genome size analysis for Morinda officinalis how using flow cytometry. Tradit. Chin. Drug. Res. Pharmacol., 29 (5): 657-660.
[23] Leus L., K. V. Laere, A. Dewitte and J. V. Huylenbroeck. 2009. Flow cytometry for plant breeding. Acta. Horticulturae, (836): 221-226.
[24] Baack E. J., K. D. Whitney and L. H. Rieseberg. 2005. Hybridization and genome size evolution: timing and blackwell publishing, Ltd. magnitude of nuclear DNA content increases in Helianthus homoploid hybrid species. New Phytol, 167: 623-630.
[25] Schnable P. S., D. Ware, R. S. Fulton, J. C. Stein, F. S. Wei, S. Pasternak, C. Z. Liang, J. W. Zhang L. Fulton, and T. A. Graves. 2009. The B73 maize genome: complexity, diversity, and dynamics. Science, 326 (5956): 1112-1115.
[26] Kawahara Y., M. D. L. Bastide, J. P. Hamilton, H. Kanamori, W. R. McCombie, S. Ouyang, D. C. Schwartz, T. Tanaka, J. Z. Wu and S. G. Zhou. 2013. Improvement of the Oryza sativa, Nipponbare reference genome using next generation sequence and optical map data. Rice, 6 (1): 1-10.
[27] Dolezel J., J. Bartos, H. Voglmayr and J. Greilhuber. 2003. Nuclear DNA content and genome size of trout and human. Cytometry, 51 (2): 127-128.
[28] Yang Y., K. C. Chen and T. E. Sun. 1996. Discussion on the genome size of several species of liliaceae. J. Wuhan Bot. Res., 14 (3): 199-203.
[29] Galbraith D. W., G. Lambert, J. Macas, J. Doležel. 2002. Analysis of nuclear DNA content and ploidy in higher plants. John Wiley & Sons, Inc., New York.
[30] Marie D. and S. C. Brown 1993. A cytometric exercise in plant DNA histograms, with 2C values for 70 species. Biol. Cell., 78 (1-2): 41-51.
Cite This Article
  • APA Style

    Xiao-Lei Chen, Kun Cong, Zhe Xu, Hua-Li Qian, Hao Chen, et al. (2022). Polygonatum Kingianum Genome Size Estimation by Flow Cytometry. Journal of Plant Sciences, 10(6), 203-208. https://doi.org/10.11648/j.jps.20221006.11

    Copy | Download

    ACS Style

    Xiao-Lei Chen; Kun Cong; Zhe Xu; Hua-Li Qian; Hao Chen, et al. Polygonatum Kingianum Genome Size Estimation by Flow Cytometry. J. Plant Sci. 2022, 10(6), 203-208. doi: 10.11648/j.jps.20221006.11

    Copy | Download

    AMA Style

    Xiao-Lei Chen, Kun Cong, Zhe Xu, Hua-Li Qian, Hao Chen, et al. Polygonatum Kingianum Genome Size Estimation by Flow Cytometry. J Plant Sci. 2022;10(6):203-208. doi: 10.11648/j.jps.20221006.11

    Copy | Download

  • @article{10.11648/j.jps.20221006.11,
      author = {Xiao-Lei Chen and Kun Cong and Zhe Xu and Hua-Li Qian and Hao Chen and Jian-Yun Su and Lei Zhang and Jia-Hong Dong and Peng-Zhang Ji},
      title = {Polygonatum Kingianum Genome Size Estimation by Flow Cytometry},
      journal = {Journal of Plant Sciences},
      volume = {10},
      number = {6},
      pages = {203-208},
      doi = {10.11648/j.jps.20221006.11},
      url = {https://doi.org/10.11648/j.jps.20221006.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.jps.20221006.11},
      abstract = {Polygonatum kingianum, an herb of Polygonatum in Liliaceae, is a kind of Chinese herbal medicine with homology of medicine and food. Polygonatum kingianum has extensive scientific research, but its genome size is seldom studied. In order to enrich the genome data of P. kingianum, this study was based on flow cytometry to detect P. kingianum collected from different areas and estimate its genome size. We use corn as the internal reference plant and rice as the internal reference plant to correct the data, and control the CV value below 5.0% to ensure the accuracy of the results. The results showed that the genome size of P. kingianum was about 6.90±0.41 pg. Moreover, high-quality results have CV values of approximately 1.0%–2.0%, and the conventional results have CV values of approximately 3.0%. The average coefficient of variation in this study is 2.5%-3.5%; therefore, the genome size of the three populations in this study has high reliability. In a word, this study provides the first estimate of the genome size of P. kingianum. In the future, these results can be used to establish sequence data and provide a basis for determining the whole genome of P. kingianum. Moreover, these results provide a basis for selecting research materials for future work on P. kingianum genetic evolution and molecular breeding.},
     year = {2022}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Polygonatum Kingianum Genome Size Estimation by Flow Cytometry
    AU  - Xiao-Lei Chen
    AU  - Kun Cong
    AU  - Zhe Xu
    AU  - Hua-Li Qian
    AU  - Hao Chen
    AU  - Jian-Yun Su
    AU  - Lei Zhang
    AU  - Jia-Hong Dong
    AU  - Peng-Zhang Ji
    Y1  - 2022/11/04
    PY  - 2022
    N1  - https://doi.org/10.11648/j.jps.20221006.11
    DO  - 10.11648/j.jps.20221006.11
    T2  - Journal of Plant Sciences
    JF  - Journal of Plant Sciences
    JO  - Journal of Plant Sciences
    SP  - 203
    EP  - 208
    PB  - Science Publishing Group
    SN  - 2331-0731
    UR  - https://doi.org/10.11648/j.jps.20221006.11
    AB  - Polygonatum kingianum, an herb of Polygonatum in Liliaceae, is a kind of Chinese herbal medicine with homology of medicine and food. Polygonatum kingianum has extensive scientific research, but its genome size is seldom studied. In order to enrich the genome data of P. kingianum, this study was based on flow cytometry to detect P. kingianum collected from different areas and estimate its genome size. We use corn as the internal reference plant and rice as the internal reference plant to correct the data, and control the CV value below 5.0% to ensure the accuracy of the results. The results showed that the genome size of P. kingianum was about 6.90±0.41 pg. Moreover, high-quality results have CV values of approximately 1.0%–2.0%, and the conventional results have CV values of approximately 3.0%. The average coefficient of variation in this study is 2.5%-3.5%; therefore, the genome size of the three populations in this study has high reliability. In a word, this study provides the first estimate of the genome size of P. kingianum. In the future, these results can be used to establish sequence data and provide a basis for determining the whole genome of P. kingianum. Moreover, these results provide a basis for selecting research materials for future work on P. kingianum genetic evolution and molecular breeding.
    VL  - 10
    IS  - 6
    ER  - 

    Copy | Download

Author Information
  • School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resource, Yunnan University of Chinese Medicine, Kunming, China

  • Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, China

  • School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resource, Yunnan University of Chinese Medicine, Kunming, China

  • School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resource, Yunnan University of Chinese Medicine, Kunming, China

  • School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resource, Yunnan University of Chinese Medicine, Kunming, China

  • School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resource, Yunnan University of Chinese Medicine, Kunming, China

  • School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resource, Yunnan University of Chinese Medicine, Kunming, China

  • School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resource, Yunnan University of Chinese Medicine, Kunming, China

  • School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resource, Yunnan University of Chinese Medicine, Kunming, China

  • Sections