| Peer-Reviewed

Petrogenesis of the Bateka Iron Prospect (Lower Dja Series, Proterozoic Cover of the Congo Craton - Cameroon)

Published in Frontiers (Volume 2, Issue 3)
Received: 12 September 2022    Accepted: 27 September 2022    Published: 11 October 2022
Views:       Downloads:
Abstract

The Bateka iron prospect is situated in the lower Dja Serie which constitutes one of the Proterozoic cover series of the Congo Craton in Cameroon. Field mapping surveys for banded iron formations (BIFs) was carried out in this area, and samples submitted for quantitative X-ray diffractometry and Inductively Coupled Plasma-Mass Spectrometry analyses. The objective of this study was to constraint petrography, mineralogy and geochemical composition to delineate the petrogenesis and the origin of Bateka banded iron formation. Bateka BIFs are slightly to moderately magnetic, laminated, exhibit macroband texture, and are composed of hematite (16.9 - 43.9%), magnetite (1.5 - 5.3%), goethite (1.4 - 23.8%) and amorphous (53.2 - 54%). They show Fe2O3 (90.9 - 99.76%), large ion lithophile elements and transition metals enrichment, and depletion for the rest of major oxides and high field strength elements. PAAS-normalization REEs are fractionated (LaN/YbN = 0.02 - 4.98) and the patterns show light rare earth elements depletion (LaN/SmN = 0.07 – 0.80) relative to heavy rare earth elements (GdN/YbN = 0.61 -7.41) and a positive Eu anomaly (Eu/Eu* = 1.05 - 1.83). The chemical composition of the Bateka iron prospect is similar to Algoma-type BIFs and based on the high Fe2O3 content, this deposit is classified as oxide facies. The overall composition of Bateka iron prospect is in accordance with the hydrothermal and Red Sea deposits and have been deposited close to the distal position. The Bateka BIFs have the composition of peraluminous sediments, they derived from Archean volcano-sedimentary materials. Their sediment provenance indicates mature pelitic greywacke that were deposited in an oceanic island arc environment from basaltic and andesitic detritus setting, where conditions were anoxic with fast sedimentation.

Published in Frontiers (Volume 2, Issue 3)
DOI 10.11648/j.frontiers.20220203.13
Page(s) 124-142
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Bateka Iron Prospect, Lower Dja Serie, Oxide Facies, Distal Position, Peraluminous Sediments, Mature Pelitic Greywacke

References
[1] James, H. L. (1954). Sedimentary facies of iron-formations. Economic Geology. 49, 235–293.
[2] Robb, L. (2004). Introduction to ore-forming processes. Black Well Scientific Publication, Oxford. pp. 247-266.
[3] Gross, G. A. (1980). Geochemistry of Iron-Formation in Canada. In Chauvel, J. J., Yugi, C El-Shazly, E. M., Gross, G. A., Laajoki, K., Markov, M. S., Rai, K. L., Stulchikov, V. A., Augustithis, S. S. (Ed) Ancient Banded Iron Formations (Regional Representations), Theophrastus, Athens, pp. 3-26.
[4] James. H. L., Sims, P. K. (1992) Precambrian Iron-formations of the World. Special Issue, Economic Geology. 68 (7), 913–1179.
[5] Bekker, A., Slack, J. F., Planasvsky, N., Krapež, B., Hofmann, A., Konhauser, K. O., Rouxel, O. (2010). Iron-Formation: The Sedimentary Product of a Complex Interplay among Mantle, Tectonic, Oceanic, and Biospheric Processes. Economic Geology. 105, 467-508.
[6] Konhauser, K. O., Hamade, T., Raiswell, R., Morris, R. C., Ferris, F. G., Southam, G., Canfeld, D. E. (2002). Could bacteria have formed the Precambrian banded iron formations? Geology. 30, 1079–1082. doi: 10.1130/0091.
[7] Bontognali, T. R. R., Fischer, W. W., Föllmi, K. B. (2013). Siliciclastic associated banded iron formation from the 3.2 Ga Moodies Group, Barberton Greenstone Belt, South Africa. Precambrian Research. 226, 116–124.
[8] Spier, C. A., de Oliveira, S. M. B., Rosière, C. A. (2003). Geology and geochemistry of the Águas Claras and Pico Iron mines, Quadrilátero Ferrífero, Minas Gerais, Brazil. Mineral Deposita 38, 751–774.
[9] Volp, K. M., Dias, V. M., Costa, L. P., Brito, A., Cequeira, D., Sato, E., Nunes, O. J., Matos, R. (2009). Planalto Piaui Iron Ore Project, Boborema Province, Brazil: Proceedings of the 10 th Biennial of Smart science for exploration and mining. p. 558-560.
[10] Kennedy, W. Q. (1965). The structural differenciation of Africa in the Pan-African (+500 my) tectonic epsiode. In: Annual Reports of the Institute of African Geology (48-49). Leeds University.
[11] Suh, C. E., Cabral, A. R., Shemang, E. M., Mbinkar, L., Mboudou, G. G. M. (2008). Two contrasting iron deposits in the precambrian mineral belt of Cameroon, west Africa. Exploration and Mining Geology, 17 (3–4), 197–207. https://doi.org/10.2113/gsemg.17.3-4.197
[12] Suh, C. E., Cabral, A. R., Ndime, E. (2009). Geology and ore fabric of the Nkout high-grade haematite deposit, southern Cameroon. Proceedings of the 10th Biennial of Smart Science for Exploration and Mining. 558 –560.
[13] Nforba, M. T., Kamgang Kabeyene, V., Suh, C. E. (2011). Regolith Geochemistry and Mineralogy of the Mbalam Itabirite-Hosted Iron Ore District, South Eastern Cameroon. Open Journal of Geology. 1, 17-36.
[14] Chombong, N., Suh, C. E. (2013). 2883 Ma commencement of BIF deposition at the northern edge of Congo craton, southern Cameroon: new zircon SHRIMP data constraint from metavolcanics. Episodes. 36, 47-57.
[15] Ganno, S., Ngnotue, T., Kouankap Nono, G. D., Nzenti, J. P., Notsa, F. M. (2015a). Petrology and geochemistry of the banded iron-formations from Ntem complex greenstones belt, Elom area, Southern Cameroon: implications for the origin and depositional environment. Chem Erde. 75, 375–387.
[16] Ganno, S., Moudioh, C., Nchare, N. A., Kouankap Nono, G. D., Nzenti, J. P. (2015b). Geochemical fngerprint and iron ore potential of the siliceous itabirite from palaeoproterozoic Nyong series, Zambi area, southwestern Cameroon. Resource Geology 66 (1), 71–80.
[17] Ganno, S., Tsozue, D., Kouankap Nono, G. D., Tchouatcha, M. S., Ngnotue, T., Takam, G. R., Nzenti, J. P. (2018). Geochemical constraints on the origin of banded iron formationhosted iron ore from the Archaean Ntem Complex (Congo Craton) in the Meyomessi area, Southern Cameroon. Resource Geology. 68 (3), 287–302.
[18] Mbang Bonda, B. M., Etame, J., Kouske, A. P., Bayiga, E. C., Ngon Ngon, G. F., Mbaï, S. J., Gérard, M. (2017). Ore Texture, Mineralogy and Whole Rock Geochemistry of the Iron Mineralization from Edea North Area, Nyong Complex, Southern Cameroon: Implication for Origin and Enrichment Process. International Journal of Geosciences. 8, 659-677. https://doi.org/10.4236/ijg.2017.85036. 2017
[19] Teutsong, T., Bontognali, T. R. R., Ndjigui, P. D., Vrijmoed, J. C., Teagle, D., Cooper, M., Vance, D. (2017). Petrography and geochemistry of the Mesoarchean Bikoula banded iron formation in the Ntem complex (Congo craton), southern Cameroon: Implications forits origin. Ore Geology Review. 80, 267–288.
[20] Ilouga, D. C. I., Ndong Bidzang, F., Ziem A Bidias, L. A., Olinga, J. B., Tata, Minyem, D. (2017). Geochemical characterization of a stratigraphic log bearing iron ore in the sanaga prospect, upper Nyong unit of Ntem complex, Cameroon. Journal of Geosciences and Geomatics 5 (5), 218–228.
[21] Eka Nzume, N., Ganno. S., Soh Tamehe, L., Nzenti, J. P. (2018). Petrography, lithostratigraphy and major element geochemistry of Mesoarchean metamorphosed banded iron formation-hosted Nkout iron ore deposit, north western Congo craton, Central West Africa. Journal of African Earth Sciences. 148, 80–98. https://doi.org/10.1016/j.jafrearsci.2018.06.007
[22] Soh Tamehe, L., Nzepang Tankwa, M., Wei, C. T., Ganno, S., Ngnotue, T., Kouankap Nono, G. D., Simon, S. J., Nzenti, J. P., Zhang, J. J. (2018). Geology and geochemical constrains on the origin and depositional setting of the Kpwa-Atog Boga banded iron formations (BIFs), northwestern Congo craton, southern Cameroon. Ore Geology Review. 95, 620–638.
[23] Soh Tamehe, L., Chongtao, W., Ganno, S., Simon, S. J., Kouankap Nono, G. D., Nzenti, J. P., Lemdjou, Y. B., Lin, N. H. (2019). Geology of the Gouap iron deposit, Congo craton, southern Cameroon: Implications for iron ore exploration. Ore Geology Review. 107, 1097–1128. https://doi.org/10.1016/j.oregeorev.2019.03.034
[24] Ndema Mbongué, J. L., Luku, O. I. (2020). Geology and geochemistry of Messondo banded iron formationhosted iron ore from the northwestern Congo Craton, southern Cameroon: implication for iron ore deposits. Global Scientific Journal. 8 (2), 4684-4699.
[25] Ndema Mbongué JL, Aroke, E. A. (2020). Petrology and Geochemical Constraints on the Origin of Banded Iron Formation-Hosted Iron Mineralization from the Paleoproterozoic Nyong Serie (Congo Craton, South Cameroon), Pout Njouma Area (Edea North): Evidence for Iron Ore Deposits. IJRIAS. 5 (8), 57-72.
[26] Ndema Mbongué, J. L., Mbonjoh, T. M. (2020). Assessment of Banded Iron Formations around Gouap Area as Potential High-Grade Iron Ore (Nyong Serie, Congo Craton - South Cameroon). IJPST. 22 (2), 87-110.
[27] Nzepang Tankwa, M., Ganno, S., Okunlola, O. A., Tanko Njiosseu, E. L., Soh Tamehe, L., Kamguia Woguia, B., Mbita, A. S. M., Nzenti, J. P. (2020). Petrogenesis and tectonic setting of the Paleoproterozoic Kelle Bidjoka iron formations, Nyong group greenstone belts, southwestern Cameroon. Constraints from petrology, geochemistry, and LA-ICP-MS zircon U-Pb geochronology. International Geology Review. 00 (00), 1–21. https://doi.org/10.1080/00206814.2020.1793423
[28] Djoukouo Soh, A. P., Ganno, S., Zhang, L., Soh Tamehe, L., Wang, C., Peng, Z., Tong, X., Nzenti, J. P. (2021). Origin, tectonic environment and age of the Bibole banded iron formations, northwestern Congo Craton, Cameroon: geochemical and geochronological constraints. Geological Magazine. 1-19. https://doi.org/10.1017/S0016756821000765
[29] Tchameni, R., Mezger, K., Nsifa, N. E., Pouclet, A. (2000). Neoarchaean crustal evolution in the Congo Craton: evidence from K rich granitoids of the Ntem Complex, southern Cameroon. Journal of African Earth Science. 30 (1), 133-147.
[30] Nkoumbou, C., Gentry, F. C., Tchakounte Numbem, J., Belle Ekwe Lobé, Y. V., Nwagoum Keyamfé, C. S. (2017). Petrology and geochemistry of REE-rich Mafé banded iron formations (Bafia group, Cameroon). CR Geosci. 349 (4), 165–174. https://doi.org/10.1016/j.crte.2017.03.002
[31] Chombong, N. N., Suh, C. E, Lehmann, B., Vishiti, A., Ilouga, D. C., Shemang, E. M., Tantoh, B. S., Kedia. A. C. (2017). Host rock geochemistry, texture and chemical composition of magnetite in iron ore in the Neoarchaean Nyong unit in southern Cameroon. Applied in Earth Sciences.
[32] Vicat, J. P. (1998). Bilan des connaissances acquises sur led series protérozoiques de couverture du craton du Congo, aux confins du Cameroun, du Centrafrique et du Congo.
[33] Moloto-A-Kenguemba, G. (2002). Evolution géotectonique Paléoprotérozoïque de la couverture du Craton archéen du Congo aux confis du Congo, du Cameroun et de Centrafrique. Thèse de doctorat, Univ. D’Orléans.
[34] Berinyuy Layu, N. (2018). Petrology and geochemistry of iron bearing units in Mbateka, Southeastern Cameroon: implications for iron ore genesis and exploration. Msc thesis, University of Buea.
[35] Alvarez, P. (1995). Evidence for a Neoproterozoic carbonate ramp on the northern edge of the Central African Craton: relations with Late Proterozoic intracratonic troughs. International Journal of Earth Sciences. 84, 636-648.
[36] Vicat, J. P., Moloto-A-Kenguemba, G. R. (1999). La syénite de la Monguélé (Sud-Est Cameroun). In Géologie et environnements au Cameroun, Vicat, J. P., Bilong, P. éd., Collect. Geocam, 2/1999, Presse Universitaire de. Yaoundé.
[37] Lasserre, M., Soba, D. (1976). Age libérien des granodiorites et des gneiss à pyroxènes du Cameroun méridional. Bulletin du BRGM 2, 17-32.
[38] Vicat, J. P., Pouclet, A., Nkoumbou, C., Seme Mouangue, A. (1997). Le volcanisme fissural néoprotézoique des series du Dja inférieur, de Yokadouma (Cameroun) et de Nola (Centrafrique)- signification géologique. Comptes Rendus de l'Academie des Sciences Paris, 325, 671-677.
[39] Bessoles, B., Trompette, R (1980). Géologie de l’Afrique. La chaine mobile panafricane «zone mobile d’Afrique Centrale» (partie sud) et «zone mobile soudanaise». Mem. B. R. G. M., 92.
[40] Cahen, L. (1982). Geochronological correlation of the Late Precambrian equences on and around the stable zones of Equatorial Africa. Precambrian Research. 1, 73-86.
[41] Van Den Hende, R. (1969). Carte géologique de reconnaissance du Cameroun à l’echelle du 1/500000, feuille Abong-Mbang Est avec notice explicative. Direction des Mines et de la Géology. Cameroun, Yaoundé.
[42] PNUD (1987). Rapport technique final du projet de recherche minière du Sud-Est du Cameroun.
[43] Vicat, J. P., Vellutini, P. J. (1987). Sur la nature et la ignification des dolérites du bassin précambrian de Sembé –Ouesso (Republique du Congo). Precambrian Research. 37, 57-69.
[44] Poidevin, J. L., Pin, C. (1986). 2 Ga U/Pb zircon dating of Mbi granidiorite (Central Africa Repiblic) and its bearing on the chronology of the proterozoic of Central Africa. Journal of African Earth Science. 5, 581-587.
[45] Laplaine, L. (1971). Notice explicative sur la feuille Nola (partie Cameroun) de la carte de reconnaisance au 1/500. Direction des Mines et de la Géologie.
[46] Poidevin, J. L. (2007). Stratigraphie isotopique du strontium et datations des formations carbbonatees et glaciogeniques neoproterozoiques du Nord et de L'ouest du Craton du Congo. Comptes Rendus des Geosciences., 339, 259-273. Cameroun, Yaoundé.
[47] Vicat, J. P., Moloto-A-Kenguemba, G. R., Pouclet, A. (2001). Les granitoïdes de la couverture protérozoïque de la bordure nord du craton du Congo (Sud-Est du Cameroun et Sud-Ouest de la République centrafricaine), témoins d’une activité magmatique post-kibarienne à pré-panafricaine. Sciences de la Terre et des planètes / Earth and Planetary Science. 332, 235-242.
[48] Champetier de Ribes, G., Gazel, J., Guiraudie, C. (1956). Rapport de fin de séjour Abong-Mbang-Est-Nola. Direction des Mines et Géologie. Yaoundé, Cameroun, indeit.
[49] Caron, V., Ekomane, E., Mahieux, G., Moussango, P., Ndjeng, E. (2010). The Mintom Formation (new): Sedimentology and geochemistry of a Neoproterozoic, Paralic succession in south-east Cameroon. Journal of African Earth Science. 57, 367-385.
[50] Lasserre, M., Chatonier, D. (1958). Les principales sources minéraliseés de L’Adamaoua (Cameroon Central). These (2e sujet) Univ, Clermont.
[51] Winchester, J. A., Park, K. G., Holland, J. G. (1980). The geochemistry of Levisian semipelitic schists from the Gairloch district western Ross. Scottish Journal of Geology. 16, 165-179.
[52] Radam, A. A. M., Fyfe, W. S, Kerrich, R. (198). Origin of peralkaline granites of Suadi Arabia. Contribution to Mineralogy and Petrology. 78, 357-366.
[53] Shand (1943). Euptive rock. John & sons.
[54] Kawabe, I., Kitahara, Y., Natito, K. (1991). Non-chondrite ytrrtium/holmium ratio and lanthanide tetrad effect observed in pre-Cenozoic limestones. Geochemical Journal. 25, 31-44.
[55] McLennan, S. M. (1989). Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes. In: Lipin BR, McKay GA (ed) Geochemistry and mineralogy of rare earth elements. Rev Mineral Geochem. 21, 169–200\
[56] Nsifa, N. E., Tchameni, R., Nédélec, A., Siqueira, R., Pouclet, A., Bascou, J. (2013). Structure and petrology of PanAfrican nepheline syenites from the South West Cameroon; Implications for their emplacement mode, petrogenesis and geodynamic significance. Journal of African Earth Science. 87, 44–58.
[57] Floyd, P. A., Winchester, J. A., Park. R. G. (1989). Geochemistry and tectonic setting of lewisian clastic metasediments from the early proterozoic loch maree group of gairloch. N. W. Scotland. Precambrian Research. 45 (1–3), 203– 214.
[58] Cox, R., Lowe, D. R., Cullers, R. L. (1995). The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the south-western United States. Geochimica Cosmochimica Acta. 59, 2919–2940.
[59] Floyd, P. A., Leveridge, B. E. (1987). Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones. Journal of the Geological Society of London. 144, 531–542.
[60] McLennan, S. M., Hemming, S., McDaniel, D. K., Hanson, G. N. (1993). Geochemical approaches to sedimentation, provenance and tectonics. In: Johnsson MJ, Basu A (Ed) Processes Controlling the Composition of Clastic Sediments. Geological Society of America; Special Paper, 284, 21-40.
[61] Pearce, J. A. (1983). Role of the sub-continental lithosphere in magma genesis at active continental margins, in: Hawkesworth, C. J., Norry, M. J. (eds), Continental basalts and mantle xenoliths, Shiva, Nantwich. 230-249.
[62] Jahn, B. M., Condie, K. C. (1995). Evolution of the Kaapvaal Craton as Viewed from Geochemical and Sm-Nd Isotopic Analyses of Intracratonic Pelites. Geochimica Cosmochimica Acta. 59, 2239-2258. https://doi.org/10.1016/0016-7037(95)00103-7
[63] Mboudou, G. M. M., Owona, S., Ndema, M. J. L., Agyinyi, C. M., Balla, A. M. C., Mengu, E. E. (2021). Petrology of Precambrian metagranites and heavy mineral chemistry of the Olounou area within the Cameroon mineral belt (Ntem complex, south Cameroon): relationships with Fe Mineralisation. GEEA, London. 21, 1-16.
[64] Beukes, N. J., Gutzmer, J. (2008). Origin and paleoenvironmental significance of major iron formations at the Archean-Paleoproterozoic boundary: Review in Economic Geology. 15, 5–47.
[65] Gourcerol, B., Thurston, P. C., Kontak, D, J., Côté Mantha, O., Biczok, J. (2016). Depositional setting of Algoma-type banded iron formation. Precambrian Research. 281, 47–79. 10.1016/j.precamres.2016,04.019.
[66] Bau, M. (1999). Scavenging of dissolved yttrium and rare-earths by precipitating iron oxyhydroxide: Experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect. Geochimica Cosmochimica Acta. 63 (1), 67-77.
[67] Condie, K. C. (1993). Chemical Composition and Evolution of the Upper Continental Crust: Contrasting Results from Surface Samples and Shales. Chemical Geology. 104, 1-37. https://doi.org/10.1016/0009-2541(93)90140-E
[68] Bau, M., Dulski, P. (1996). Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Research. 79, 37–55.
[69] McLennan, S. M., Taylor, S. R. (1980). Th and U in sedimentary rocks: crustal evolution and sedimentary recycling. Nature. 285, 621-624.
[70] Gradstein, F. M, Ogg, J. G., Smith, A. G., Bleeker, W., Lourens, L. (2004). Anew Geologic Time Scale, with special reference to Precambrian and Neogene. Episodes. 27 (2), 83-100.
[71] Wright, J., Schrader, H., Holser, W. (1987) Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite. Geochimica. Cosmochimica Acta. 51, 631–644.
[72] Roser, B. P., Korsch, R. J. (1986). Determination of tectonic setting of sandstone–mudstone suites using SiO2 content and K2O/Na2O ratio. Journal of Geology. 94, 635–650.
[73] Eka Nzume, N. (2011). Geology of iron ore deposit in Nkout area, Southern Region in Cameroon. Msc Thesis, University of Yaoundé.
[74] Isley, A. E. (1995). Hydrothermal Plumes and the Delivery of Iron to Banded Iron Formation. Journal of Geology. 103, 169-185.
[75] Frei, R., Polat, A. (2007). Source heterogeneity for the major components of 3.7 Ga banded iron formation (Isua Greenstone Belt, western Greenland): tracing the nature of interacting water masses in BIF formation. Earth Planetary Science Letter 253, 266–281.
[76] Marchig, V., Gundlach, H., Möller, P., Schley, F. (1982). Some geochemical indicators for discrimination between diagenetic and hydrothermal metalliferous sediments. Marine Geology. 50, 241–256.
[77] Klein, C., Ladeira, E. A. (2000). Geochemistry and petrology of some Proterozoic banded iron-formations of the Quadrilatero Ferrifero, Minas Gerais, Brazil. Economic Geology. 95, 405-428.
[78] Alexander, B. W., Bau, M., Andersson, P., Dulski, P. (2008). Continentally-derived solutes in shallow Archean seawater: rare earth element and Nd isotope evidence in iron formation from the 2.9 Ga Pongola Supergroup, South Africa. Geochimica Cosmochimica Acta 72, 394.
[79] Planavsky, N., Bekker, A., Rouxel, O. J., Kamber, B., Hofmann, A., Knudsen, A. and Lyons, T. W. (2010). Rare Earth Element and yttrium compositions of Archaean and Paleoproterozoic Fe formations revisited: New perspectives on the significance and mechanisms of deposition. Geochimica et Cosmochimica Acta. 74, 6387-640.
[80] Bhatia, M. R., Crook, K. A (1986). Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contribribution to Mineralogy and Petrology. 92 (2), 181–193.
[81] Dymek, R. F., Klein, C. (1988). Chemistry. Petrology and origin of BIF lithologies from the 3800 Ma Isua Supracrustal Belt. West Greenland. Precambrian Research. 39, 247-302.
[82] Barrett, T. J. (1981). Chemistry and mineralogy of Jurassic bedded chert overlyingophiolites in the North Appenines, Italy. Chemical Geology. 34, 289317.
[83] Michard, A., Albarede, F., Michard, G., Minster, J. F., Charlou, J. L. (1983). Rare-earth elements and uranium in high-temperature solutions from East Pacific Rise hydrothermal vent field (13°N). Nature 303, 795–797.
[84] Alibo, D. S, Nozaki, Y. (1999). Rare earth elements in seawater: particle association, shale normalization, and Ce oxidation. Geochimica Cosmochimica Acta 63, 363–372.
[85] Thurston, P. C., Kamber, B. S. (2012). Whitehouse, M. Archean cherts in banded iron formation: insight into Neoarchean ocean chemistry and depositional processes. Precambrian Research. 214–215, 227–257.
[86] Angerer, T., Hagemann, S. G., Danyushevsky, L. V. (2012). Geochemical evolution of the banded iron formation-hosted high-grade iron ore system in the Koolyanobbing Greenstone Belt, Western Australia. Economic Geology. 107, 599–644.
[87] Clout, J. M. F. (2006). Iron formation hosted iron ores in the Hamersley Province of Western Australia. Applied Earth Science. 115, 115-125.
[88] Dalstra, H., Guedes, S. T. (2004). Giant hydrothermal deposits with Mg-Fe metasomatism; a comparison of the Carajas, Hamersley, and other irn ores. Economic Geology. 99, 1793-1800.
[89] Hagemann, S. G., Angerer, T., Duuring, P., Rosiere, C. A., Figueiredo, E., Silva, R. C., Lobato, L., Hensler, A. S., Walde, D. H. G. (2016). BIF-hosted iron mineral system: A review. Ore Geology Review. 76, 317–359.
[90] Guider, J. W. (1981). Iron ore beneficiation -key to modern steelmaking. Mineral Engineering. 33, 410–413.
[91] Anderson, K. F. E., Wall, F., Rollinson, G. K., Moon, C. J. (2014). Quantitative mineralogical and chemical assessment of the Nkout iron ore deposit, Southern Cameroon. Ore Geology Review 62, 25–39.
Cite This Article
  • APA Style

    Ndema Mbongue Jean-Lavenir, Peter Namange, Ngoran Gilles, Bafon Godlove, Nchimenyi Sobse, et al. (2022). Petrogenesis of the Bateka Iron Prospect (Lower Dja Series, Proterozoic Cover of the Congo Craton - Cameroon). Frontiers, 2(3), 124-142. https://doi.org/10.11648/j.frontiers.20220203.13

    Copy | Download

    ACS Style

    Ndema Mbongue Jean-Lavenir; Peter Namange; Ngoran Gilles; Bafon Godlove; Nchimenyi Sobse, et al. Petrogenesis of the Bateka Iron Prospect (Lower Dja Series, Proterozoic Cover of the Congo Craton - Cameroon). Frontiers. 2022, 2(3), 124-142. doi: 10.11648/j.frontiers.20220203.13

    Copy | Download

    AMA Style

    Ndema Mbongue Jean-Lavenir, Peter Namange, Ngoran Gilles, Bafon Godlove, Nchimenyi Sobse, et al. Petrogenesis of the Bateka Iron Prospect (Lower Dja Series, Proterozoic Cover of the Congo Craton - Cameroon). Frontiers. 2022;2(3):124-142. doi: 10.11648/j.frontiers.20220203.13

    Copy | Download

  • @article{10.11648/j.frontiers.20220203.13,
      author = {Ndema Mbongue Jean-Lavenir and Peter Namange and Ngoran Gilles and Bafon Godlove and Nchimenyi Sobse and Median Yongye and Moundignigni Amad Badawi},
      title = {Petrogenesis of the Bateka Iron Prospect (Lower Dja Series, Proterozoic Cover of the Congo Craton - Cameroon)},
      journal = {Frontiers},
      volume = {2},
      number = {3},
      pages = {124-142},
      doi = {10.11648/j.frontiers.20220203.13},
      url = {https://doi.org/10.11648/j.frontiers.20220203.13},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.frontiers.20220203.13},
      abstract = {The Bateka iron prospect is situated in the lower Dja Serie which constitutes one of the Proterozoic cover series of the Congo Craton in Cameroon. Field mapping surveys for banded iron formations (BIFs) was carried out in this area, and samples submitted for quantitative X-ray diffractometry and Inductively Coupled Plasma-Mass Spectrometry analyses. The objective of this study was to constraint petrography, mineralogy and geochemical composition to delineate the petrogenesis and the origin of Bateka banded iron formation. Bateka BIFs are slightly to moderately magnetic, laminated, exhibit macroband texture, and are composed of hematite (16.9 - 43.9%), magnetite (1.5 - 5.3%), goethite (1.4 - 23.8%) and amorphous (53.2 - 54%). They show Fe2O3 (90.9 - 99.76%), large ion lithophile elements and transition metals enrichment, and depletion for the rest of major oxides and high field strength elements. PAAS-normalization REEs are fractionated (LaN/YbN = 0.02 - 4.98) and the patterns show light rare earth elements depletion (LaN/SmN = 0.07 – 0.80) relative to heavy rare earth elements (GdN/YbN = 0.61 -7.41) and a positive Eu anomaly (Eu/Eu* = 1.05 - 1.83). The chemical composition of the Bateka iron prospect is similar to Algoma-type BIFs and based on the high Fe2O3 content, this deposit is classified as oxide facies. The overall composition of Bateka iron prospect is in accordance with the hydrothermal and Red Sea deposits and have been deposited close to the distal position. The Bateka BIFs have the composition of peraluminous sediments, they derived from Archean volcano-sedimentary materials. Their sediment provenance indicates mature pelitic greywacke that were deposited in an oceanic island arc environment from basaltic and andesitic detritus setting, where conditions were anoxic with fast sedimentation.},
     year = {2022}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Petrogenesis of the Bateka Iron Prospect (Lower Dja Series, Proterozoic Cover of the Congo Craton - Cameroon)
    AU  - Ndema Mbongue Jean-Lavenir
    AU  - Peter Namange
    AU  - Ngoran Gilles
    AU  - Bafon Godlove
    AU  - Nchimenyi Sobse
    AU  - Median Yongye
    AU  - Moundignigni Amad Badawi
    Y1  - 2022/10/11
    PY  - 2022
    N1  - https://doi.org/10.11648/j.frontiers.20220203.13
    DO  - 10.11648/j.frontiers.20220203.13
    T2  - Frontiers
    JF  - Frontiers
    JO  - Frontiers
    SP  - 124
    EP  - 142
    PB  - Science Publishing Group
    SN  - 2994-7197
    UR  - https://doi.org/10.11648/j.frontiers.20220203.13
    AB  - The Bateka iron prospect is situated in the lower Dja Serie which constitutes one of the Proterozoic cover series of the Congo Craton in Cameroon. Field mapping surveys for banded iron formations (BIFs) was carried out in this area, and samples submitted for quantitative X-ray diffractometry and Inductively Coupled Plasma-Mass Spectrometry analyses. The objective of this study was to constraint petrography, mineralogy and geochemical composition to delineate the petrogenesis and the origin of Bateka banded iron formation. Bateka BIFs are slightly to moderately magnetic, laminated, exhibit macroband texture, and are composed of hematite (16.9 - 43.9%), magnetite (1.5 - 5.3%), goethite (1.4 - 23.8%) and amorphous (53.2 - 54%). They show Fe2O3 (90.9 - 99.76%), large ion lithophile elements and transition metals enrichment, and depletion for the rest of major oxides and high field strength elements. PAAS-normalization REEs are fractionated (LaN/YbN = 0.02 - 4.98) and the patterns show light rare earth elements depletion (LaN/SmN = 0.07 – 0.80) relative to heavy rare earth elements (GdN/YbN = 0.61 -7.41) and a positive Eu anomaly (Eu/Eu* = 1.05 - 1.83). The chemical composition of the Bateka iron prospect is similar to Algoma-type BIFs and based on the high Fe2O3 content, this deposit is classified as oxide facies. The overall composition of Bateka iron prospect is in accordance with the hydrothermal and Red Sea deposits and have been deposited close to the distal position. The Bateka BIFs have the composition of peraluminous sediments, they derived from Archean volcano-sedimentary materials. Their sediment provenance indicates mature pelitic greywacke that were deposited in an oceanic island arc environment from basaltic and andesitic detritus setting, where conditions were anoxic with fast sedimentation.
    VL  - 2
    IS  - 3
    ER  - 

    Copy | Download

Author Information
  • Department of Geology, Faculty of Science, University of Buea, Buea, Cameroon

  • Department of Geology, Faculty of Science, University of Buea, Buea, Cameroon

  • Department of Geology, Faculty of Science, University of Buea, Buea, Cameroon

  • Explorers 33 Consulting Group Sarl, Yaounde, Cameroon

  • Explorers 33 Consulting Group Sarl, Yaounde, Cameroon

  • Department of Geology, Faculty of Science, University of Buea, Buea, Cameroon

  • Department of Geology, Faculty of Science, University of Buea, Buea, Cameroon

  • Sections