Evaluation of Isotopic Abundance Ratio in Naphthalene Derivatives After Biofield Energy Treatment Using Gas Chromatography-Mass Spectrometry
American Journal of Applied Chemistry
Volume 3, Issue 6, December 2015, Pages: 194-200
Received: Oct. 14, 2015; Accepted: Oct. 23, 2015; Published: Nov. 16, 2015
Views 2663      Downloads 57
Authors
Mahendra Kumar Trivedi, Trivedi Global Inc., Henderson, USA
Alice Branton, Trivedi Global Inc., Henderson, USA
Dahryn Trivedi, Trivedi Global Inc., Henderson, USA
Gopal Nayak, Trivedi Global Inc., Henderson, USA
Gunin Saikia, Trivedi Science Research Laboratory Pvt. Ltd., Bhopal Madhya Pradesh, India
Snehasis Jana, Trivedi Science Research Laboratory Pvt. Ltd., Bhopal Madhya Pradesh, India
Article Tools
Follow on us
Abstract
Naphthalene and 2-naphthol are two naphthalene derivatives, which play important roles in the chemical and pharmaceutical industries. The aim of this study was to evaluate the impact of biofield energy treatment on the isotopic abundance of 13C/12C or 2H/1H and 18O/16O in naphthalene and 2-naphthol using gas chromatography-mass spectrometry (GC-MS). Naphthalene and 2-naphthol samples were divided into two parts: control and treated. The control group remained as untreated, while the treated group was subjected to Mr. Trivedi’s biofield energy treatment. The treated samples were subdivided into four parts named as T1, T2, T3 and T4. Control and treated samples were characterized using GC-MS. The GC-MS data revealed that the isotopic abundance ratio of 13C/12C or 2H/1H, (PM+1)/PM and 18O/16O, (PM+2)/PM were increased significantly in treated naphthalene and 2-naphthol (where PM-primary molecule, (PM+1) isotopic molecule either for 13C or 2H and (PM+2) is the isotopic molecule for 18O). The isotopic abundance ratio of (PM+1)/PM in the treated T2 samples of naphthalene and 2-naphthol was increased up to 129.40% and 165.40%, respectively as compared to their respective control. However, the isotopic abundance ratio of (PM+1)/PM in the treated T1, T3 and T4 samples of naphthalene was decreased by 44.41%, 33.49% and 30.3%, respectively as compared to their respective control. While in case of 2-naphthol, the isotopic abundance ratio of (PM+1)/PM was decreased by 39.57% in T1 sample and then gradually increased up to 9.85% from T3 to T4 samples. The isotopic abundance ratio of (PM+2)/PM in treated T2 sample of 2-naphthol was increased up to 163.24%, whereas this value was decreased by 39.57% in treated T1 sample. The GC-MS data suggest that the biofield energy treatment has significantly altered the isotopic abundance of 2H, 13C in naphthalene and 2H, 13C and 18O in 2-naphthol as compared to the control.
Keywords
Biofield Energy Treatment, Naphthalene, Gas Chromatography-Mass Spectrometry, 2-Naphthol
To cite this article
Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Gunin Saikia, Snehasis Jana, Evaluation of Isotopic Abundance Ratio in Naphthalene Derivatives After Biofield Energy Treatment Using Gas Chromatography-Mass Spectrometry, American Journal of Applied Chemistry. Vol. 3, No. 6, 2015, pp. 194-200. doi: 10.11648/j.ajac.20150306.13
Copyright
Copyright © 2015 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
Batt DG, Maynard GD, Petraitis JJ, Shaw JE, Galbraith W, et al. (1990) 2-Substituted-1-naphthols as potent 5-lipoxygenase inhibitors with topical anti-inflammatory activity. J Med Chem 33: 360-370.
[2]
Wilson CO, Gisvolds O, Block JH, Beale JM (2004) Textbook of organic medicinal and pharmaceutical chemistry. Lippincott, Williams and Wilkins, Philadelphia.
[3]
Franck HG, Stadelhofer JW (1988) Industrial aromatic chemistry. Berlin, Germany: Springer-Verlag.
[4]
Umweltbundesamt (2007) Naphthalin/naphthole und human biomonitoring. Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz 50: 1357-1364.
[5]
Fujiwara Y, Asano R, Moritani I, Teranishi S (1976) Aromatic substitution of olefins. XXV. Reactivity of benzene, naphthalene, ferrocene, and furan toward styrene, and the substituent effect on the reaction of monosubstituted benzenes with styrene. J Org Chem 41: 1681-1683.
[6]
Mkpenie V, Ebong G, Obot IB, Abasiekong B (2008) Evaluation of the effect of azo group on the biological activity of 1-(4-methylphenylazo)-2-naphthol. E J Chem 5: 431-434.
[7]
Azam F, Singh S, Khokhra SL, Prakash O (2007) Synthesis of Schiff bases of naphtha [1,2-d]thiazol-2-amine and metal complexes of 2-(2′-hydroxy) benzylidene aminonaphthothiazole as potential antimicrobial agents. J Zhejiang Univ Sci B 8: 446-452.
[8]
http://ec.europa.eu/environment/pops/
[9]
Plekhanov VG (2004) Applications of the isotopic effect in solids. (1stedn), Springer-Verlag Berlin Heidelberg.
[10]
Weisel CP, Park S, Pyo H, Mohan K, Witz G (2003) Use of stable isotopically labeled benzene to evaluate environmental exposures. J Expo Anal Environ Epidemiol 13: 393-402.
[11]
Trivedi MK, Patil S, Shettigar H, Bairwa K, Jana S (2015) Phenotypic and biotypic characterization of Klebsiella oxytoca: An impact of biofield treatment. J Microb Biochem Technol 7: 203-206.
[12]
Barnes PM, Powell-Griner E, McFann K, Nahin RL (2004) Complementary and alternative medicine use among adults: United States, 2002. Adv Data 343: 1-19.
[13]
Maxwell JC (1865) A dynamical theory of the electromagnetic field. Phil Trans R Soc Lond 155: 459-512.
[14]
Trivedi MK, Patil S, Tallapragada RM (2012) Thought intervention through bio field changing metal powder characteristics experiments on powder characteristics at a PM plant. Future Control and Automation LNEE 173: 247-252.
[15]
Trivedi MK, Patil S, Tallapragada RM (2015) Effect of biofield treatment on the physical and thermal characteristics of aluminium powders. Ind Eng Manage 4: 151.
[16]
Trivedi MK, Patil S, Tallapragada RM (2013) Effect of biofield treatment on the physical and thermal characteristics of silicon, tin and lead powders. J Material Sci Eng 2: 125.
[17]
Trivedi MK, Patil S, Tallapragada RM (2013) Effect of biofield treatment on the physical and thermal characteristics of vanadium pentoxide powder. J Material Sci Eng S11: 001.
[18]
Trivedi MK, Nayak G, Patil S, Tallapragada RM, Latiyal O (2015) Studies of the atomic and crystalline characteristics of ceramic oxide nano powders after bio field treatment. Ind Eng Manage 4: 161.
[19]
Trivedi MK, Patil S, Shettigar H, Gangwar M, Jana S (2015) Antimicrobial sensitivity pattern of Pseudomonas fluorescens after biofield treatment. J Infect Dis Ther 3: 222.
[20]
http://webbook.nist.gov/cgi/cbook.cgi?ID=C91203&Units=SI&Mask=200#Mass-Spec
[21]
http://webbook.nist.gov/cgi/cbook.cgi?ID=C135193&Mask=200#Mass-Spec.
ADDRESS
Science Publishing Group
548 FASHION AVENUE
NEW YORK, NY 10018
U.S.A.
Tel: (001)347-688-8931