Studies on Chemical Reactivity of p-aminophenyl Benzene-Fused Bis Tetrathiafulvalenes Through Quantum Chemical Approaches
American Journal of Applied Chemistry
Volume 4, Issue 3, June 2016, Pages: 104-110
Received: May 15, 2016; Accepted: May 23, 2016; Published: Jun. 1, 2016
Views 3480      Downloads 81
Amel Bendjeddou, Aquatic and Terrestrial Ecosystems Laboratory, Mohamed-Cherif Messaadia University, Souk Ahras, Algeria
Tahar Abbaz, Aquatic and Terrestrial Ecosystems Laboratory, Mohamed-Cherif Messaadia University, Souk Ahras, Algeria
Abdelkrim Gouasmia, Organic Materials and Heterochemistry Laboratory, Larbi Tebessi University, Tebessa, Algeria
Didier Villemin, Molecular and Thio-Organic Chemistry Laboratory, Ensicaen & Caen University, Caen, France
Article Tools
Follow on us
The theoretical study on the molecular structure of a serie of p-aminophenyl benzene-fused bis tetrathiafulvalenes is presented. Optimized geometry of the title compound was calculated using DFT method at the level of B3LYP theory and 6-31G(d,p) basis set. The HOMO and LUMO analysis were used to determine the charge transfer within the molecule and some molecular properties such as ionization potential, electron affinity, electronegativity, chemical potential, hardness, softness and global electrophilicity index. Molecular electrostatic potential map was performed by the DFT method. The chemometric methods PCA and HCA were employed to find the subset of variables that could correctly classify the compounds according to their reactivity.
Tetrathiafulvalenes, Density Functional Theory, Computational Chemistry, Electronic Structure, Quantum Chemical Calculations
To cite this article
Amel Bendjeddou, Tahar Abbaz, Abdelkrim Gouasmia, Didier Villemin, Studies on Chemical Reactivity of p-aminophenyl Benzene-Fused Bis Tetrathiafulvalenes Through Quantum Chemical Approaches, American Journal of Applied Chemistry. Vol. 4, No. 3, 2016, pp. 104-110. doi: 10.11648/j.ajac.20160403.16
Copyright © 2016 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License ( which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Achson, A. (2009). An Introduction to the Chemistry of Heterocyclic Compounds, 3rd ed.; Wiley: Intersciences, India.
Patel, N. B., Shaikh, F. M. (2010). New 4-Thiazolidinones of Nicotinic Acid with 2-Amino-6-methylbenzothiazole and their Biological Activity. Sci. Pharm, 78, 753.
Gronowitz, S. (1985). Thiophene and Thiophene Derivatives, vols. 1-4, Wiley-Interscience, New York.
Kellog, R. M. (1984). Thiophenes and their Benzo Derivatives: (i) Structure. Comp. Heterocyclic Chem, 4, 713.
Press, J. B. Russell, R. K. (1990). Five-Membered Ring Systems: Thiophenes & Se & Te Analogs. Prog. Heterocyclic Chem, 2, 50.
Foresman, J. B., Frisch, A. (1996). Exploring Chemistry with Electronic Structure Methods, Gaussian Inc., Pittsburgh, USA.
Kurt, M., Sertbakan, T. R., Ozduran, M. (2008). Spectrochim, An experimental and theoretical study of molecular structure and vibrational spectra of 3-and 4-pyridineboronic acid molecules by density functional theory calculations. Acta Part A: Mol. Biomol. Spectrosc, 70, 664.
Ravikumar, C., Joe, I. H., Jayakumar, V. S. (2008). Charge transfer interactions and nonlinear optical properties of push–pull chromophore benzaldehyde phenylhydrazone: A vibrational approach. Chem. Phys. Lett, 460, 552.
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A. (2010). Gaussian 09, Revision C.01; Gaussian Inc. Wallingford, CT, USA.
Schlegel, H. B. (1982). Optimization of equilibrium geometries and transition structures. J. Comput. Chem, 3, 214.
Ditchfield, R., Hehre, W. J., Pople, J. A. (1971). Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules. J. Chem. Phys, 54, 724.
Dennington, R., Keith, T., Millam, J. (2009). GaussView, Version 5, Semichem Inc. Shawnee Mission, KS.
Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys, 98, 5648.
Abbaz, T., Bendjeddou, A., Gouasmia, A. k., Villemin, D., Shirahata, T. (2014). New Unsymmetrically Benzene-Fused Bis (Tetrathiafulvalene): Synthesis, Characterization, Electrochemical Properties and Electrical Conductivity of Their Materials. Int. J. Mol. Sci, 15, 4550.
Wolinski, K., Hinton, J. F., Pulay, P. (1990). Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J. Am. Chem. Soc, 112, 8251.
Gázquez, J. L. (1993). Structure and Bonding: Hardness and Softness in DFT Theory, Springer-Verlag, Berlin Heidelberg, 80.
Pearson, R. G. (1963). Hard and Soft Acids and Bases. J. Am. Chem. Soc, 85, 3533.
Parr, R. G., Yang, W. (1989). Density-Functional Theory of Atoms and Molecules, Oxford University Press, New York.
Pearson, R. G. (1986). Absolute electronegativity and hardness correlated with molecular orbital theory, Proc. Natl. Acad. Sci. U. S. A, 8440.
Kavitha, E., Sundaranganesan, N., Sebastian, S. (2010). Molecular structure, vibrational spectroscopic and HOMO, LUMO studies of 4-nitroaniline by density functional method. Indian J. Pure Appl. Phys, 48, 20.
Parr, R. G., Szentpály, L. V., Liu, S. (1999). Electrophilicity Index. J. Am. Chem. Soc. 1922.
Parr, R. G., Yang, W. (1989). Functional Theory of Atoms and Molecule, Oxford University Press, New York.
Ayers, P. W., Parr, R. G. (2000). Variational Principles for Describing Chemical Reactions:  The Fukui Function and Chemical Hardness Revisited. J. Am. Chem. Soc, 122, 2010.
Parr, R. G., Yang, W. (1984). Density functional approach to the frontier-electron theory of chemical reactivity. J. Am. Chem. Soc, 106, 4049.
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
Tel: (001)347-983-5186