Analytical Surface Charge Control Model for AlN/GaN/AlGaN Double Heterojunction Field-Effect Transistor
Journal of Electrical and Electronic Engineering
Volume 1, Issue 5, December 2013, Pages: 114-122
Received: Nov. 17, 2013; Published: Nov. 30, 2013
Views 4243      Downloads 292
Md Shofiqul Islam Khan, Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology (BUET), Bangladesh
Article Tools
Follow on us
We have argued that the nature of surface potential variation with gate voltage of AlN/GaN/AlGaN Double Heterojunction Field Effect Transistor (DHFET) is no different from that of the conventional GaAs/AlGaAs HEMT devices. Necessary simulated band diagrams have been presented to justify our claim and we have also proposed a non-linear expression for Fermi level (EF) variation with the two-dimensional electron gas density (2DEG). We have showed that our proposed expression provides better agreement with the numerical solution than the previous approximations. Besides, expression of surface charge density (ns) variation with gate voltage (VG) obtained using our proposed model, shows better fit with the numerical simulation data in wide range of bias conditions.
AlN/GaN/AlGaN DHFET, Double Heterojunction, Analytical Charge Control Model, 2DEG, Fermi Level
To cite this article
Md Shofiqul Islam Khan, Analytical Surface Charge Control Model for AlN/GaN/AlGaN Double Heterojunction Field-Effect Transistor, Journal of Electrical and Electronic Engineering. Vol. 1, No. 5, 2013, pp. 114-122. doi: 10.11648/j.jeee.20130105.12
Y.-F. Wu, M. Moore, A. Saxler, T. Wisleder, and P. Parikh, 40-W/mm double field-plated GaN HEMTs, in Proc. 64th Device Res. Conf. State College, PA, 2006, pp. 151–152.
J. P. Ibbetson, P. T. Fini, K. D. Ness, S. P. DenBaars, J. S. Speck, and U.K. Mishra, Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors, Appl. Phys. Lett. 77, 250 (2000).
Y. Uemoto, M. Hikita, H. Ueno, H. Matsuo, H. Ishida, M. Yanagihara, T. Ueda, T. Tanaka, and D. Ueda, Gate injection transistor (GIT) A normally-off AlGaN/GaN power transistor using conductivity modulation, IEEE Trans. Electron Devices, vol. 54, no. 12, pp. 3393–3399, 2007.
N. Ikeda, Y. Niiyama, H. Kambayashi, Y. Sato, T. Nomura, S. Kato, and S. Yoshida, GaN power transistors on Si substrates for switching applications, Proc. IEEE, vol. 98, no. 6, pp. 1–11, Jun. 2010.
F. Medjdoub, M. Alomari, J.-F. Carlin, M. Gonschorek, E. Feltin, M. A. Py, N. Grandjean, and E. Kohn,Barrier layer scaling of InAIN/GaN HEMTs, IEEE Electron Device Lett., vol. 29, no. 5, pp. 422–425, May 2008.
F. Medjdoub, J. Derluyn, K. Cheng, M. Leys, S. Degroote, D. Marcon, D. Visalli, M. Van Hove, M. Germain, and G. Borghs,Low on resistance high breakdown normally-off AIN/GaN/AlGaN DHFET on Si substrate, IEEE Electron Device Lett., vol. 31, no. 2, pp. 111–113, Feb. 2010.
L. Shen, S. Heikman, B. Moran, R. Coffie, N.-Q. Zhang, D. Buttari, I.P. Smorchkova, S. Keller, S. P. Den Baars, U. K. Mishra, AlGaN/AlN/GaN high-power microwave HEMT, IEEE Electron Device Lett., Vol. 22, no. 10, pp. 457–459.
Pinto M.R., Conor S. Rafferty, and Robert W. Dutton, PISCES2-Poisson and Continuity Equation Solver, Stanford Electronics Laboratory Technical Report, Stanford University, September 1984.
Bernardini, F., and V. Fiorentini, Spontaneous Polarization and Piezoelectric Constants of III-V Nitrides, Phys. Rev. B, Vol. 56, No. 16, 15.(Oct. 1997): R10024–R10027.
Law, M.E. et. al., Self-Consistent Model of Minority-Carrier Lifetime, Diffusion Length, and Mobility, IEEE Electron Device Letters, Vol. 12, No. 8, 1991.
Caughey, D.M., and R.E. Thomas, Carrier Mobilities in Silicon Empirically Related to Doping and Field, in Proc. IEEE, (1967): 2192–2193.
Danqiong Hou, Griff L. Bilbro, and Robert J. Trew, Analytic Model for Conduction Current in AlGaN/GaN DHFETs/HEMTs, Active and Passive Electronic Components, vol. 2012, Article ID 806253, 11 pages, 2012.
H.K. Ahn and M. E. Nokali, An Analytical Model for High Electron Mobility Transistors, IEEE Transactions on Electron Devices, Vol. 41, No. 6, pp. 874-878, 1994.
T. Zimmermann, D. Deen, Yu Cao, J. Simon, P. Fay, D. Jena, H.G. Xing,AlN/GaN Insulated-Gate HEMTs With 2.3 A/mm Output Current and 480 mS/mm Transconductance, IEEE Electron Device Lett., vol.29, no.7, pp.661-664, July 2008.
M. Micovic, P. Hashimoto, M. Hu, I. Milosavljevic, J. Duvall, P. J. Willadsen, W.-S. Wong, A. M. Conway, A. Kurdoghlian, P. W. Deelman, J.-S. Moon, A. Schmitz, and M. J. Delaney, GaN double heterojunction field effect transistor for microwave and millimeterwave power applica-tions, in IEDM Tech. Dig., 2004, pp. 807–810.
Bahat-Treidel, E. and Hilt, O. and Brunner, F. and Wurfl, J. and Trankle, G.,Punchthrough-Voltage Enhancement of AlGaN/GaN HEMTs Using AlGaN Double-Heterojunction Confinement, IEEE Electron Device Lett., vol. 55, no. 12, pp. 3354–3359, Dec. 2008.
C. Q. Chen, J. P. Zhang, V. Adivarahan, A. Koudymov, H. Fatima, G. Simin, J. Yang, and M. Asif Khan, AlGaN/GaN/AlGaN double heterostructure for high-power III-N field-effect transistors, Appl. Phys. Lett., 82, 4593 (2003).
X. Cheng and Y. Wang, A surface-potential-based compact model for AlGaN/GaN MODFETs, IEEE Trans. Electron Devices, vol. 58, no. 2, pp. 448–454, Feb. 2011.
S. Kola, J. M. Golio, and G. N. Maracas, An analytical expression for Fermi level versus sheet carrier concentration for HEMT modeling, IEEE Electron Device Lett., vol. 9, no. 3, pp. 136138, Mar. 1988.
I. Angelov, H. Zirath, and N. Rorsman, A new empirical non-linear model for HEMT and MESFET devices, IEEE Trans. Microw. Theory Tech., vol. 40, no. 12, pp. 22582266, Dec. 1992.
K. Lee, M. Shur, T. J. Drummond, and H. Morkoc,Current–voltage and capacitance–voltage characteristics of modulation doped field transistors, IEEE Trans. Electron Devices, vol. ED-30, no. 3, pp. 207-212, Mar. 1983.
M. Li and Y. Wang, 2-D analytical model for currentvoltage characteristics and transconductance of AlGaN/GaN MODFETs, IEEE Trans. Electron Devices, vol. 55, no. 1, pp. 261-267, Jan. 2008.
X. Cheng, M. Li, and Y. Wang, Physics based compact model for AlGaN/GaN MODFET with closed form I-V and C-V characteristics, IEEE Trans. Electron Devices, vol. 56, no. 12, pp. 2881–2887, Dec. 2009.
D. Delagebcaudeuf and NT Linh, Metal–(n) AlGaAs-GaAs two dimen-sional electron gas FET, IEEE Trans. Electron Devices, ED- 29, pp. 955, 1982.
T.J. Drummond, H. Morkoc, K. Lee, M. Shur, Model for modulation-doped field-effect transistor, IEEE Electron. Dev. Lett., EDL- 3, pp. 338, 1982.
S. Kola, J.M. Golio, G.N. Maracas, An analytic expression for Fermi level versus sheet carrier concentration for HEMT modeling, IEEE Electron. Dev. Lett., vol. 9, pp. 136, 1988.
A.J. Shey, W.H. Ku, On the charge control of the two- dimensional electron gar for analytic modeling of HEMT’s, IEEE Electron. Dev. Lett., vol. 9, pp. 624, 1988.
A.J. Shey, W.H. Ku, An analytic current-voltage characteristics model for high electron mobility transistors based on nonlinear charge-control formulation, IEEE Electron. Dev. Lett., vol. 36, pp. 2299, 1989.
N. DasGupta, A. DasGupta, An analytical expression for sheet carrier concentration versus gate voltage for HEMT modeling, Solid-State Electron., 36, 201 (1993).
Rashmi, A. Kranti, S. Haldar, An accurate charge control model for spontaneous and piezoelectric polarization dependent two-dimensional electron gas (2-DEG) sheet charge density of lattice mismatched Al-GaN/GaN HEMTs, Solid-State Electronics, vol. 46, no. 5, pp. 621-630, 2002.
E. T. Yu, X. Z. Dang, P. M. Asbeck, S. S. Lau, G. J. Sullivan, Spontaneous and piezoelectric polarization effects in III–V nitride heterostructures, Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, vol.17, no.4, pp. 1742–1749, Jul 1999.
Chuang, S.L., and C.S. Chang, A Band-Structure Model of Strained Quantum-Well Wurtzite Semiconductors, Semicond. Sci. Technol., No.12, pp. 252–262, Nov 1996.
Bhagat, A. (2012). Simulation of optically controlled SiC (Silicon Carbide) using analytical modeling of high frequency response and switching applications (Doctoral dissertation, CALIFORNIA STATE UNIVERSITY).
Hatakeyama, T.; Fukuda, K.; Okumura, H., "Physical Models for SiC and Their Application to Device Simulations of SiC Insulated-Gate Bipolar Transistors," IEEE Transactions on Electron Devices, vol.60, no.2, pp.613,621, Feb. 2013.
J. Wu, A. C. Wang, C-W. Liu, T-H. Yu, Ya-Yun Cheng, Tzer-Min Shen, Chien-Tai Chan, and G. Tsai. "Modeling challenges of advanced doping technologies." in 12th International Workshop on Junction Technology (IWJT), pp. 150-155, 2012.
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
Tel: (001)347-983-5186