| Peer-Reviewed

Morphometric Characterization of Endomycorrhizal Fungi (Glomeraceae and Acaulosporaceae) from the Bouaflé and Niellé Areas in Côte d'Ivoire

Received: 31 October 2022    Accepted: 7 December 2022    Published: 10 January 2023
Views:       Downloads:
Abstract

Mycorrhizal symbioses, which are widespread in various terrestrial ecosystems, constitute a very important research topic for many biologists. Arbuscular mycorrhizal fungi (AMF), belonging to the phylum Glomeromycota, take their name from their characteristic structures: arbuscules. Spores represent the main structures allowing the morphological identification and characterization of AMF. The spores directly extracted from soil samples were identified under an optical microscope. The diversity of AMF in maize rhizospheres in Bouaflé and Niellé areas was highlighted. Thus, 12 genera of AMF divided into 8 families have been identified. Spores of two families of endomycorrhizae (Glomeraceae and Acaulosporaceae) have been described. The spores of the Glomeraceae family represented by 4 genera Glomus, Funneliformis, Septoglomus and Rhizophagus are globose to subglobose, 45 to 200 µm in size. The spores have a single wall composed of 3 to 4 parietal layers. The outer layers stain with Melzer's reagent. The suspensory hypha often characterized by the presence of constriction, light brown in color is the extension of layer 2. Morphologically, the spores of Acaulosporaceae represented by a single genus Acaulospora, are distinguished by the globose to subglobose shape. The spores are whitish, pale yellow, golden yellow to orange-brown in color and 90 to 200µm in diameter. The subcellular structure of spores consists of a spore wall (outer wall) and two inner walls. The outer and inner walls of the spores consist of three parietal layers. The outermost layers are evanescent, hyaline whitish, orange-brown to pale yellow. The layers of the inner wall are adherent to each other appearing as a single layer. The surface of the spores, populated with projections of different shapes resembling often rudimentary hyphae, show scars and ornamentations. This study gives the essential of the status of AMF and revealed the morphometric and structural characteristics of some AMF.

Published in American Journal of BioScience (Volume 11, Issue 1)
DOI 10.11648/j.ajbio.20231101.11
Page(s) 1-10
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Arbuscular Mycorrhizal Fungi, Glomeraceae, Spore Diversity, Spore Density, Acaulosporaceae

References
[1] De la Fuente Cantó C., Simonin M., King E., et al. (2020). An extended root phenotype: the rhizosphere, its formation and impacts on plant fitness. Plant J. 103 (3): 951-964. doi: 10.1111/tpj.14781.
[2] Sanders I. R., Rodriguez A.. (2016); Aligning molecular studies of mycorrhizal fungal diversity with ecologically important levels of diversity in ecosystems. ISME J. 10 (12): 2780-2786. doi: 10.1038/ismej.2016.73.
[3] Tedersoo L., Bahram M., Zobel M. (2020); How mycorrhizal associations drive plant population and community biology. Science. 367 (6480). doi: 10.1126/science.aba1223.
[4] Smith S. E., Read D. J. (2008). Mycorrhizal Symbiosis. Vol 137. Academic Press is an imprint of Elsevier; doi: 10.1097/00010694-198403000-00011.
[5] Gerz M., Guillermo Bueno C., Ozinga W. A., Zobel M., Moora M. (2018); Niche differentiation and expansion of plant species are associated with mycorrhizal symbiosis. J Ecol. 106 (1): 254-264. doi: 10.1111/1365-2745.12873.
[6] Brundrett M. C., Tedersoo L. (2018); Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol. 220 (4): 1108-1115. doi: 10.1111/nph.14976.
[7] Schüβler A., Schwarzott D., Walker C. (2001); A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res. 105 (12): 1413-1421. doi: 10.1017/S0953756201005196.
[8] Fortin J. A., Becard G., Declerck S, et al. (2002); Arbuscular mycorrhiza on root-organ cultures. Can J Bot. 80 (1): 1-20..
[9] Redecker D., Morton J. B., Bruns T. D. (2000); Ancestral lineages of arbuscular mycorrhizal fungi (Glomales). Mol Phylogenet Evol. 14 (2): 276-284. doi: 10.1006/mpev.1999.0713.
[10] Delaux P. M. (2017); Comparative phylogenomics of symbiotic associations. New Phytol. 213 (1): 89-94. doi: 10.1111/nph.14161.
[11] Brito I., Goss M. J., de Carvalho M., Chatagnier O., van Tuinen D. (2012); Impact of tillage system on arbuscular mycorrhiza fungal communities in the soil under Mediterranean conditions. Soil Tillage Res. 121: 63-67. doi: 10.1016/j.still.2012.01.012.
[12] Krishna K. R. (2005). Mycorrhizas : A Molecular Analysis. Science Publishers, Inc.; doi: 10.1201/978148228028.
[13] Crossay T. (2018): Caractérisation taxonomique des champignons mycorhiziens à arbuscules natifs des sols ultramafiques de Nouvelle-Calédonie ; analyse de leur synergie permettant l’adaptation des plantes à ces milieux extrêmes. Published online 1-319.
[14] Strullu D. G., Plenchette C. (1991); Les mycorhizes en horticulture. PHM Rev Hortic. 352: 50-55.
[15] Ouallal I., Elyacoubi H., Atmane R. (2019). Diversite naturelle des champignons endomicorhiziens associes aux arganeraies et potentiel mycorhizogene de leur rhizosphere. (January).
[16] Dalpé Y. (1995): Systématique des endomycorhizes à arbuscules : de la mycopaléontologie à la biochimie. In: : Fortin, J. A. CC et YP, ed. La Symbiose Mycorhizienne. Éditions O.; 1-20.
[17] Sanders I. R. (2004); Intraspecific genetic variation in arbuscular mycorrhizal fungi and its consequences for molecular biology, ecology, and development of inoculum. Can J Bot. 82: 1057-1062.
[18] McNeill J. (2007). International Code of Botanical Nomenclature (Vienna Code). In: The Seventeenth International Botanical Congress Vienna, Austria, July 2005. Vol 568.; Accessed October 27, 2022. https://cir.nii.ac.jp/crid/1571698600852109440.
[19] Oehl F., Jansa J., Ineichen K. (2011); Champignons mycohiziens arbusculaires, bioindicateurs dans les sols agricoles suisses. … Agron suisse. 2: 304-311. Accessed April 15, 2014. http://dialnet.unirioja.es/servlet/articulo?codigo=3725311&orden=363193&info=link
[20] Da Silva G. A., Maia L. C., Oehl F. (2012); Phylogenetic systematics of the Gigasporales. Mycotaxon. 122 (4): 207-220. doi: 10.5248/122.207.
[21] Pontes J. S. De, Sánchez-castro I., Alves G., Oehl F. (2013); Scutellospora alterata, a new gigasporalean species from the semi-arid Caatinga biome in Northeastern Brazil. Mycotaxon. 125 (3): 169-181.
[22] Willis A., Błaszkowski J., Prabhu T., et al. (2016); Sacculospora felinovii, a novel arbuscular mycorrhizal fungal species (Glomeromycota) from dunes on the west coast of India. Mycol Prog 2016 157. 15 (7): 791-798. doi: 10.1007/S11557-016-1208-6.
[23] Błaszkowski J., Chwat G. (2013); Septoglomus deserticola emended and new combinations in the emended definition of the family Diversisporaceae. Acta Mycol. 48 (1): 89-103. doi: 10.5586/am.2013.011.
[24] Sieverding E., Da Silva G. A., Berndt R., Oehl F. (2014); Rhizoglomus, a new genus of the Glomeraceae. Mycotaxon. 129 (2): 373-386. doi: 10.5248/129.373.
[25] Zeramdini N. (2009). Étude du polymorphisme intra- et inter-spécifique du gène β-tubuline chez des espèces de champignons mycorhiziens à arbuscules en vue de développer des marqueurs moléculaires. Mémoire Master en Sci Biol. Université de Montréal. Published online 2009.”
[26] Droh G., Djezou K. M., Kouassi K. A. B., Kouassi A.-B., Tiecoura K. (2022); Diversity of Arbuscular Mycorrhizal Fungi Spores in Maize (Zea mays L.) Plantations in Côte d ’ Ivoire. Am J Agric For. 10 (5): 170-180. doi: 10.11648/j.ajaf.20221005.14.
[27] Corazon-Guivin M. A., Cerna-Mendoza A., Guerrero-Abad J. C., et al. (2019); Nanoglomus plukenetiae, a new fungus from Peru, and a key to small-spored Glomeraceae species, including three new genera in the “Dominikia complex/clades.” Mycol Prog. 18 (12): 1395-1409. doi: 10.1007/S11557-019-01522-1.
[28] MINADER. (2021). Etude de Faisabilité Pour La Mise En Place de Parcs Agroindustriels, de Centres d’agrégation et de Services Du Projet de Développement Du Pôle Agro Industriel Dans Le Nord de La Côte d’Ivoire - (2 PAI-NORD CI). Ferkessedougou, Côte d’Ivoire.
[29] Gerdemann J. W., Nicolson T. H. (1963); Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans Br Mycol Soc. 46 (2): 235-244. doi: 10.1016/S0007-1536(63)80079-0.
[30] INVAM, (2021). “International culture collection of VA Mycorrhizal fungi,” Consulté le 15 Juillet 2021. http/www.invam.caf.wvu.edu.
[31] Rajeshkumar P. P., Hosagoudar V. B., Gopakumar B. (2013); Mycorrhizal association of Ochlandra travancorica in Kerala, India. J Threat Taxa. 5 (2): 3673-3677. doi: 10.11609/jott.o3235.3673-77.
[32] Pandey R. R., Loushambam S., Srivastava A. K.. (2020); Arbuscular Mycorrhizal and Dark Septate Endophyte Fungal Associations in Two Dominant Ginger Species of Northeast India. Proc Natl Acad Sci India Sect B Biol Sci. 90 (4): 885-894. doi: 10.1007/s40011-019-01159-w.
[33] Ouallal I., Abbas Y., Ech-Cheddadi S., et al. (2018); Diversity of endomycorrhizal fungi on argan tree roots and potential for mycorrhizal development in the soil rhizosphere of argan stands in southwestern Morocco. Bois Forets des Trop. 338 (4): 73-86. doi: 10.19182/bft2018.338.a31678.
[34] Touré G.-P. T., Nandjui J., Koné A. W., et al. (2020); Diversité des champignons mycorhiziens à arbuscules et interactions avec le système sol-litière dans un écotone forêt-savane, Côte d’Ivoire. Étude Gest des Sols. 28: 2021. http://www.afes.fr/publications.
[35] Bossou L. R., Houngnandan H. B., Adandonon A., Zoundji C. (2019); Diversité des champignons mycorhiziens arbusculaires associés à la culture du maïs (Zea mays L.) au Bénin. Int J Biol Chem Sci. 13 (2): 597-609. doi: https://dx.doi.org/10.4314/ijbcs.v13i2.2.
[36] Redon P. (2009). Rôle de champignons mycorhiziens à arbuscules dans le transfert du cadmium (Cd) du sol à la luzerne (Medicago truncatula). Doctorate thesis, University Henri Poincaré, Nancy I.
[37] Antunes P. M., Miller J., Carvalho L. M., Klironomos J. N., Newman J. A.. (2008); Even after death the endophytic fungus of Schedonorus phoenix reduces the arbuscular mycorrhizas of other plants. Funct Ecol. 22 (5): 912-918. doi: 10.1111/j.1365-2435.2008.01432.x.
[38] Purin S., Rillig M. C. (2008); Parasitism of arbuscular mycorrhizal fungi: Reviewing the evidence. FEMS Microbiol Lett. 279 (1): 8-14. doi: 10.1111/j.1574-6968.2007.01007.x.
[39] Koffi G. A., Dibi E. A. D. B., Anon H. A., et al. (2021); Diversité des champignons mycorhiziens arbusculaires associés à la culture du maïs et de l’arachide au nord de la Côte d’Ivoire. Rev Int des Biosci. 18 (3): 240-250.
[40] Droh G. (2017). Diversité génétique des champignons mycorhiziens a arbuscules associes au cacaoyer (théobroma cacao L.) de côte d’ivoire : cas de la rhizosphere des cacaoyeres des régions du gôh, de la nawa et de san-pédro. Published online. Doctorate thesis, Université Félix Houphouët Boigny.
[41] Rincón C., Droh G., Villard L., et al. (2021); Hierarchical spatial sampling reveals factors influencing arbuscular mycorrhizal fungus diversity in Côte d’Ivoire cocoa plantations. Mycorrhiza. 31 (3): 289-300. doi: 10.1007/s00572-020-01019-w.
[42] Semane F., Chliyeh M., Kachkouch W., et al. (2018); Follow-up of a Composite Endomycorrhizal Inoculum in the Rhizosphere of Olive Plants, Analysis after 42 Months of Culture. Annu Res Rev Biol. 22 (2): 1-18. doi: 10.9734/arrb/2018/38604.
[43] Ambili K., Thomas G. V., Gopal M., Gupta A. (2017); Influence of crop combinations and soil factors on diversity and association of arbuscular mycorrhizal fungi in arecanut based cropping systems. J Plant Crop. 45 (1): 20-32. doi: 10.19071/jpc.2017.v45.i1.3234.
[44] Bouabdelli Z., Belhadj S., Smail-Saadoun N., et al. (2018); Influence de l’aridité sur la variation de la colonisation mycorhizienne arbusculaire chez cinq populations naturelles algériennes du Pistachier de l’Atlas (Pistacia atlantica Desf.). Rev d’Ecologie, Terre Vie. 2018; 73 (June): 330-344.
[45] Gaonkar S., Rodrigues B. F. (2020); Diversity of arbuscular mycorrhizal (AM) fungi in mangroves of Chorao Island, Goa, India. Wetl Ecol Manag. 28 (5): 765-778. doi: 10.1007/s11273-020-09747-8.
[46] Rivaton D. (2016). Étude des champignons mycorhiziens arbusculaires des sols en systèmes de grandes cultures biologiques sans élevage : application à la nutrition phosphatée. Mémoire de fin de cycle d'Ingénieur, AGROCAMPUS OUEST, France.
[47] Blaszkowski J., Czerniawska B. (2008); Glomus eburneum and Scutellospora fulgida, species of arbuscular mycorrhizal fungi (Glomeromycota) new for Europe. aCta Mycol. 43 (1): 57-65.
[48] Sharma S., Parkash V., Aggarwal A. (2008); Glomales I: A monograph of Glomus spp. (Glomaceae) in the sunflower rhizosphere of Haryana, India. Helia. 31 (49): 13-17. doi: 10.2298/HEL0849013S.
[49] Palenzuela J., Azcón-Aguilar C., Barea J.-M., da Silva G., Oehl F. (2013); Acaulospora pustulata and Acaulospora tortuosa, two new species in the Glomeromycota from Sierra Nevada National Park (southern Spain). Nov Hedwigia. 97 (3-4): 305-319. doi: 10.1127/0029-5035/2013/0129.
Cite This Article
  • APA Style

    Germain Droh, Kouadio Meliton Djezou, Seydou Tuo, Mamadou Touré, Abou-Bakari Kouassi. (2023). Morphometric Characterization of Endomycorrhizal Fungi (Glomeraceae and Acaulosporaceae) from the Bouaflé and Niellé Areas in Côte d'Ivoire. American Journal of BioScience, 11(1), 1-10. https://doi.org/10.11648/j.ajbio.20231101.11

    Copy | Download

    ACS Style

    Germain Droh; Kouadio Meliton Djezou; Seydou Tuo; Mamadou Touré; Abou-Bakari Kouassi. Morphometric Characterization of Endomycorrhizal Fungi (Glomeraceae and Acaulosporaceae) from the Bouaflé and Niellé Areas in Côte d'Ivoire. Am. J. BioScience 2023, 11(1), 1-10. doi: 10.11648/j.ajbio.20231101.11

    Copy | Download

    AMA Style

    Germain Droh, Kouadio Meliton Djezou, Seydou Tuo, Mamadou Touré, Abou-Bakari Kouassi. Morphometric Characterization of Endomycorrhizal Fungi (Glomeraceae and Acaulosporaceae) from the Bouaflé and Niellé Areas in Côte d'Ivoire. Am J BioScience. 2023;11(1):1-10. doi: 10.11648/j.ajbio.20231101.11

    Copy | Download

  • @article{10.11648/j.ajbio.20231101.11,
      author = {Germain Droh and Kouadio Meliton Djezou and Seydou Tuo and Mamadou Touré and Abou-Bakari Kouassi},
      title = {Morphometric Characterization of Endomycorrhizal Fungi (Glomeraceae and Acaulosporaceae) from the Bouaflé and Niellé Areas in Côte d'Ivoire},
      journal = {American Journal of BioScience},
      volume = {11},
      number = {1},
      pages = {1-10},
      doi = {10.11648/j.ajbio.20231101.11},
      url = {https://doi.org/10.11648/j.ajbio.20231101.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajbio.20231101.11},
      abstract = {Mycorrhizal symbioses, which are widespread in various terrestrial ecosystems, constitute a very important research topic for many biologists. Arbuscular mycorrhizal fungi (AMF), belonging to the phylum Glomeromycota, take their name from their characteristic structures: arbuscules. Spores represent the main structures allowing the morphological identification and characterization of AMF. The spores directly extracted from soil samples were identified under an optical microscope. The diversity of AMF in maize rhizospheres in Bouaflé and Niellé areas was highlighted. Thus, 12 genera of AMF divided into 8 families have been identified. Spores of two families of endomycorrhizae (Glomeraceae and Acaulosporaceae) have been described. The spores of the Glomeraceae family represented by 4 genera Glomus, Funneliformis, Septoglomus and Rhizophagus are globose to subglobose, 45 to 200 µm in size. The spores have a single wall composed of 3 to 4 parietal layers. The outer layers stain with Melzer's reagent. The suspensory hypha often characterized by the presence of constriction, light brown in color is the extension of layer 2. Morphologically, the spores of Acaulosporaceae represented by a single genus Acaulospora, are distinguished by the globose to subglobose shape. The spores are whitish, pale yellow, golden yellow to orange-brown in color and 90 to 200µm in diameter. The subcellular structure of spores consists of a spore wall (outer wall) and two inner walls. The outer and inner walls of the spores consist of three parietal layers. The outermost layers are evanescent, hyaline whitish, orange-brown to pale yellow. The layers of the inner wall are adherent to each other appearing as a single layer. The surface of the spores, populated with projections of different shapes resembling often rudimentary hyphae, show scars and ornamentations. This study gives the essential of the status of AMF and revealed the morphometric and structural characteristics of some AMF.},
     year = {2023}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Morphometric Characterization of Endomycorrhizal Fungi (Glomeraceae and Acaulosporaceae) from the Bouaflé and Niellé Areas in Côte d'Ivoire
    AU  - Germain Droh
    AU  - Kouadio Meliton Djezou
    AU  - Seydou Tuo
    AU  - Mamadou Touré
    AU  - Abou-Bakari Kouassi
    Y1  - 2023/01/10
    PY  - 2023
    N1  - https://doi.org/10.11648/j.ajbio.20231101.11
    DO  - 10.11648/j.ajbio.20231101.11
    T2  - American Journal of BioScience
    JF  - American Journal of BioScience
    JO  - American Journal of BioScience
    SP  - 1
    EP  - 10
    PB  - Science Publishing Group
    SN  - 2330-0167
    UR  - https://doi.org/10.11648/j.ajbio.20231101.11
    AB  - Mycorrhizal symbioses, which are widespread in various terrestrial ecosystems, constitute a very important research topic for many biologists. Arbuscular mycorrhizal fungi (AMF), belonging to the phylum Glomeromycota, take their name from their characteristic structures: arbuscules. Spores represent the main structures allowing the morphological identification and characterization of AMF. The spores directly extracted from soil samples were identified under an optical microscope. The diversity of AMF in maize rhizospheres in Bouaflé and Niellé areas was highlighted. Thus, 12 genera of AMF divided into 8 families have been identified. Spores of two families of endomycorrhizae (Glomeraceae and Acaulosporaceae) have been described. The spores of the Glomeraceae family represented by 4 genera Glomus, Funneliformis, Septoglomus and Rhizophagus are globose to subglobose, 45 to 200 µm in size. The spores have a single wall composed of 3 to 4 parietal layers. The outer layers stain with Melzer's reagent. The suspensory hypha often characterized by the presence of constriction, light brown in color is the extension of layer 2. Morphologically, the spores of Acaulosporaceae represented by a single genus Acaulospora, are distinguished by the globose to subglobose shape. The spores are whitish, pale yellow, golden yellow to orange-brown in color and 90 to 200µm in diameter. The subcellular structure of spores consists of a spore wall (outer wall) and two inner walls. The outer and inner walls of the spores consist of three parietal layers. The outermost layers are evanescent, hyaline whitish, orange-brown to pale yellow. The layers of the inner wall are adherent to each other appearing as a single layer. The surface of the spores, populated with projections of different shapes resembling often rudimentary hyphae, show scars and ornamentations. This study gives the essential of the status of AMF and revealed the morphometric and structural characteristics of some AMF.
    VL  - 11
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Laboratory of Biotechnology, Agriculture and Valorization of Biological Resources, Faculty of Biosciences, University Félix HOUPHOU?T-BOIGNY, Abidjan, C?te d’Ivoire

  • Laboratory of Biotechnology, Agriculture and Valorization of Biological Resources, Faculty of Biosciences, University Félix HOUPHOU?T-BOIGNY, Abidjan, C?te d’Ivoire

  • Laboratory of Biotechnology, Agriculture and Valorization of Biological Resources, Faculty of Biosciences, University Félix HOUPHOU?T-BOIGNY, Abidjan, C?te d’Ivoire

  • Laboratory of Ecology and Sustainable Development, University of NANGUI ABROGOUA, Abidjan, C?te d’Ivoire

  • Laboratory of Biotechnology, Agriculture and Valorization of Biological Resources, Faculty of Biosciences, University Félix HOUPHOU?T-BOIGNY, Abidjan, C?te d’Ivoire

  • Sections