Southern blight, or white mold, caused by Sclerotium rolfsii (Sacc.), represents an emerging and concerning phytosanitary constraint threatening the sustainability of vegetable production systems in Côte d’Ivoire, particularly in agro-ecological zones with high production density. This study aimed to establish an epidemiological and socio-agronomic diagnosis of the disease, analyze farmers’ perceptions, and evaluate local phytosanitary management practices from a sustainability perspective. A multidisciplinary and participatory approach was implemented between 2021 and 2022 across six agro-ecological zones, combining phytopathological surveys on 223 plots, semi-structured interviews with producers, and morpho-diagnostic laboratory analyses. The results revealed a high disease prevalence, affecting 64.57% of the plots, with a maximum incidence of 34.44% and severity reaching 22.59% in the AEZ IV. Tomato (Solanum lycopersicum) was the most affected host, followed by eggplant, peanut, and bean. Despite this widespread distribution, farmers’ knowledge remained limited. Only 52.91% of the producers recognized the symptoms from the images, and barely 13% could identify characteristic fungal structures (mycelium, sclerotia), which correlated with a high illiteracy rate (72.65%). The observed cultural practices (high-risk crop rotations, empirical fungicide applications, lack of effective prophylactic measures) were largely inappropriate. Multifactorial analyses indicated a significant influence of education level, gender, and geographic zone on farmers’ disease knowledge. These findings highlight the urgent need to strengthen farmers’ capacities through targeted training, integration of indigenous knowledge, and promotion of integrated management strategies within a context-specific framework for the sustainable management of southern blight in Ivorian vegetable production systems.
Published in | American Journal of BioScience (Volume 13, Issue 3) |
DOI | 10.11648/j.ajbio.20251303.11 |
Page(s) | 69-87 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2025. Published by Science Publishing Group |
Sclerotium rolfsii, Southern blight, Vegetable Farming, Farmer Perception, Integrated Disease Management, Epidemiological Diagnosis, Agro-ecological Zones
Agroecological zones | Regions | Number of surveyed producers | Number of plots visited | Proportion (%) |
---|---|---|---|---|
AEZ I | Agneby Tiassa | 11 | 11 | 21.97 |
Goh | 8 | 8 | ||
Indenie Djuablin | 8 | 8 | ||
Les grands ponts | 14 | 14 | ||
Loh Djiboua | 8 | 8 | ||
AEZ II | Haut Sassandra | 18 | 18 | 16.14 |
Marahoue | 10 | 10 | ||
Nawa | 8 | 8 | ||
AEZ III | Guemon | 12 | 12 | 10.31 |
Tonkpi | 11 | 11 | ||
AEZ IV | Belier | 13 | 13 | 15.25 |
Iffou | 11 | 11 | ||
Moronou | 10 | 10 | ||
AEZ V | Bere | 9 | 9 | 21.97 |
Gbeke | 19 | 19 | ||
Worodougou | 21 | 21 | ||
AEZ VI | Poro | 19 | 19 | 14.35 |
Tchologo | 13 | 13 | ||
Overall total | 223 | 223 | 99.99 |
Variables | Modalities | Agroecological zones (AEZ) | Overall mean | |||||
---|---|---|---|---|---|---|---|---|
AEZ I | AEZ II | AEZ III | AEZ IV | AEZ V | AEZ VI | |||
Gender | Female | 18.37 | 19.44 | 100.00 | 20.59 | 46.94 | 40.63 | 36.77 |
Male | 81.63 | 80.56 | 0.00 | 79.41 | 53.06 | 59.38 | 63.23 | |
Age | < 18 years old | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
18 to 25 years old | 2.04 | 5.56 | 0.00 | 0.00 | 12.24 | 0.00 | 4.04 | |
26 to 35 years old | 20.41 | 47.22 | 52.17 | 44.12 | 14.29 | 12.50 | 29.15 | |
36 to 45 years old | 51.02 | 36.11 | 0.00 | 17.65 | 42.86 | 53.13 | 36.77 | |
46 to 55 years old | 18.37 | 11.11 | 21.74 | 14.71 | 28.57 | 31.25 | 21.08 | |
56 to à 65 years old | 4.08 | 0.00 | 0.00 | 14.71 | 2.04 | 3.13 | 4.04 | |
> 65 years old | 2.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.45 | |
Unknown | 2.04 | 0.00 | 26.09 | 8.82 | 0.00 | 0.00 | 4.48 | |
Marital Status | Single | 22.45 | 25.00 | 8.70 | 23.53 | 18.37 | 0.00 | 17.49 |
Married | 77.55 | 75.00 | 91.30 | 67.65 | 81.63 | 100.00 | 81.17 | |
Unknown | 0.00 | 0.00 | 0.00 | 8.82 | 0.00 | 0.00 | 1.35 | |
Educational Level | Primary education | 8.16 | 11.11 | 0.00 | 8.82 | 18.37 | 6.25 | 9.87 |
Secondary education | 8.16 | 27.78 | 0.00 | 8.82 | 22.45 | 0.00 | 12.56 | |
Higher education | 2.04 | 2.78 | 0.00 | 5.88 | 8.16 | 0.00 | 3.59 | |
Illiterate | 81.63 | 58.33 | 100.00 | 67.65 | 51.02 | 93.75 | 72.65 | |
Unknown | 0.00 | 0.00 | 0.00 | 8.82 | 0.00 | 0.00 | 1.35 |
Variables | Modalities | Agroecological zones (AEZ) | Overall Mean | |||||
---|---|---|---|---|---|---|---|---|
AEZ I | AEZ II | AEZ III | AEZ IV | AEZ V | AEZ VI | |||
Cultivated area (m2) | 50-500 | 8.16 | 2.78 | 47.83 | 44.12 | 22,45 | 12.50 | 20.63 |
501-2500 | 26.53 | 25.00 | 30.43 | 29.41 | 44.90 | 31.25 | 31.84 | |
2501-5000 | 34.69 | 61.11 | 21.74 | 26.47 | 20.41 | 25.00 | 31.84 | |
5001-10000 | 24.49 | 11.11 | 0.00 | 0.00 | 12.24 | 12.50 | 11.66 | |
˃ 10000 | 6.12 | 0.00 | 0.00 | 0.00 | 0.00 | 18.75 | 4.04 | |
Soil type | Floodplain | 71.43 | 66.67 | 100.00 | 44.12 | 40.82 | 25.00 | 56.05 |
Well-drained land | 26.53 | 33.33 | 0.00 | 17.65 | 59.18 | 75.00 | 37.67 | |
Streamside margin | 2.04 | 0.00 | 0.00 | 38.24 | 0.00 | 0.00 | 6.28 | |
Soil texture | Clay-dominated | 4.08 | 22.22 | 26.09 | 0.00 | 0.00 | 9.38 | 8.52 |
Gravelly | 2.04 | 0.00 | 0.00 | 0.00 | 0.00 | 6.25 | 1.35 | |
Sand-dominated | 93.88 | 77.78 | 73.91 | 100.00 | 100.00 | 84.38 | 90.13 | |
Plot condition | Exploited | 63.27 | 50.00 | 56.52 | 85.29 | 77.55 | 93.75 | 71.30 |
New | 36.73 | 50.00 | 43.48 | 14.71 | 22.45 | 6.25 | 28.70 |
Irrigation supply methods | Growing seasons | Overall average | |
---|---|---|---|
Rainy season (n = 128) | Dry season (n = 95) | ||
Drip irrigation | 0.78 | 10.52 | 4.93 |
Manual irrigation | 28.12 | 89.47 | 54.26 |
rain-fed | 78.91 | 13.69 | 51.12 |
Types of symptoms | Agroecological zones (AEZ) with proportions of producers (%) | ||||||
---|---|---|---|---|---|---|---|
AEZ I | AEZ II | AEZ III | AEZ IV | AEZ V | AEZ VI | Overall mean | |
Yellowing | 34.69 | 38.89 | 26.09 | 64.71 | 44.90 | 9.38 | 37.67 |
Wilt | 48.98 | 44.44 | 30.43 | 58.82 | 46.94 | 15.63 | 42.60 |
Leaf worming | 6.12 | 0.00 | 8.70 | 29.41 | 0.00 | 0.00 | 6.73 |
Withering | 44.90 | 44.44 | 21.74 | 58.82 | 36.73 | 21.88 | 39.46 |
Scattered outbreaks | 36.73 | 30.56 | 8.70 | 52.94 | 32.65 | 12.50 | 30.94 |
Mycelium | 10.20 | 22.22 | 4.35 | 44.12 | 20.41 | 3.13 | 17.94 |
Sclerotia | 0.00 | 5.56 | 0.00 | 32.35 | 10.20 | 3.13 | 8.52 |
Variables | Effectif (N=223) | Proportion of producers (%) | |
---|---|---|---|
Knowledge | Yes | 115 | 51.57 |
No | 108 | 48.43 | |
Phenological stages | Vegetative | 12 | 5.38 |
Flowering | 18 | 8.07 | |
Fructification | 107 | 47.98 | |
Growing season | Rainy season | 112 | 50,22 |
Dry season | 26 | 11.66 | |
Hot season | 9 | 4.04 |
Variables | Application des fongicides | Active substances | Proportion (%) |
---|---|---|---|
Application | Yes | - | 47.98 |
No | - | 52.02 | |
Fungicide applications | Banko Plus-Maneb | Chlorothalonil (550 g/l) et carbendazine (110 g/l) | 3.14 |
Callicuivre - Mancotop | Azoxythrobin (75 g/l) - Mancozeb 800 g/kg | 3.14 | |
Callicuivre-Maneb | Azoxythrobin (75 g/l)- Maneb | 0.45 | |
Callicuivre - Maneb | Azoxythrobin (75 g/l)- Maneb | 0.45 | |
Banko Plus | Chlorothalonil (550 g/l) et carbendazin (110 g/l) | 14.8 | |
Callicuivre | Azoxythrobin (75 g/l) | 27.35 | |
Poudre du Ghana | Inknown | 0.45 | |
Fongicide cacao | Inknown | 0.45 | |
Mancotop 80 W | Mancozeb 800 g/kg | 5.38 | |
Manèbe | Maneb | 8.97 | |
Fongicide maraicher | Inknown | 1.35 | |
Nom inconnu | Inknown | 1.35 | |
Fungicide application times | Avant apparition des symptômes | - | 4.48 |
Après apparition des symptômes | - | 49.77 | |
Application dose | Dose homologuée | - | 44.39 |
Deux fois la dose homologuée | - | 26.45 | |
En fonction de l'intensité des symptômes | - | 41.25 | |
Sans mesure | - | 4.03 | |
Application materials | Pulvérisateur | - | 43.50 |
Applicateur traditionnel adapté | - | 2.69 | |
Arrosoir | - | 4.03 |
Prophylactic measures | Proportion of producers (%) | |
---|---|---|
Managing diseased plants | Removal of diseased plants | 22.42 |
Ridging around plants | 68.16 | |
Field abandonment | 0.22 | |
Planting density | Dense (no line spacing) | 80.72 |
Not very dense (respecting line spacing) | 18.83 | |
Very dense (no line spacing) | 0.45 | |
Weed management | Weekly | 68.61 |
According to availability | 6.28 | |
Monthly | 25.11 | |
Harvest residues | Not incorporated | 100 |
Variables | Fertilizer application | Number | Proportion of producers (%) |
---|---|---|---|
Mineral fertilizer use | Yes | 138 | 61.88 |
No | 85 | 38.12 | |
Type of mineral fertilizer | NPK | 86 | 38.56 |
Urea | 13 | 5.83 | |
Biological fertilizers (technokel, supergrow, black fertilizer, biofertilizer) | 5 | 2.24 | |
Starter fertilizers | 1 | 0.45 | |
Foliar fertilizers (callifert, fertigofol) | 18 | 8.07 | |
Unknown | 25 | 11.21 | |
Calcium nitrate | 3 | 1.35 | |
Pectofauna | 2 | 0.90 | |
Organic fertilizer | Yes | 66 | 29.60 |
No | 157 | 70.40 | |
Types of organic fertilizers | Manure | 33 | 14.80 |
Crop residues (coconut husk, corn bran, wood chips) | 33 | 14.80 |
Family | Species | Variety | Number of fields encountered | Number of infected fields | Proportions (%) |
---|---|---|---|---|---|
Amarallydaceae | Onion | Violet | 1 | 1 | 0.69 |
Apiaceae | Carrot | Royal cross, | 1 | 1 | 0.69 |
Parsley | Frisée, Unknown | 4 | 4 | 2.78 | |
Asteraceae | Lettuce | Frisée, Unknown, Mineto, | 5 | 2 | 1.39 |
Brassicaceae | Cabbage | F1 Tropicana, kkcross, Royal cross, Tropica cross F1 | 11 | 3 | 2.08 |
Convolvulaceae | Potato | Leaf | 1 | 1 | 0.69 |
Cucurbitaceae | Cucumber | Poinsett | 6 | 1 | 0.69 |
Zucchini | Unknown, Koubera, Raffia palm | 6 | 2 | 1.39 | |
Leguminosae | Peanut | Early | 12 | 10 | 6.94 |
Bean | Burkina, Cora, Unknown | 7 | 8 | 5.56 | |
Malvaceae | Jute mallow | Unknown | 3 | 0 | 0.00 |
Okra | Clemson, Hiré, Kirikou F1, local | 3 | 1 | 0.69 | |
Poaceae | Maize | Unknown | 1 | 0 | 0.00 |
Polygonaceae | Sorrel | Unknown | 2 | 0 | 0.00 |
Solanaceae | Eggplant | Bello, Djemba, Kalenda, Kotobi, Local, Local bokouma, Local Koromgbo, local N’drowa, F1 Egg, violet | 34 | 13 | 9.03 |
Pepper | Big sun, Unknown, local, Long-fruited local | 7 | 1 | 0.69 | |
Sweet pepper | Improved, Tibesti, Yellow Wonder | 2 | 2 | 1.39 | |
Tomato | F1 Caviar, F1 Cobra 26, Unknown, Jarra, Local, Mona F1, Padma, Petomech, PV, Raja, Riogrand, Tropimech, UC 82 B | 141 | 94 | 65.28 | |
Grand total | 223 | 144 |
Regions | Incidence (%) | Severity (%) |
---|---|---|
Agneby Tiassa | 8.75 ± 0.27 e | 4.08 ± 0.08 d |
Goh | 14.49 ± 0.49 d | 20.68 ± 0.14 b |
Indénie Djuablin | 17.69 ± 0.44 d | 9.895 ± 0.13 c |
Les grands ponts | 65.17 ± 0.220 a | 34.34 ± 0.07 a |
Loh Djiboua | 19.25 ± 0.37 c | 11.96 ± 0.11 c |
Haut Sassandra | 23.37 ± 0.21 c | 12.09 ± 0.06 c |
Marahoué | 34.02 ± 0.44 ab | 20.93 ± 0.13 b |
Nawa | 33.90 ± 0.55 ab | 12.41 ± 0.16 bc |
Guemon | 9.67 ± 0.20 e | 3.56 ± 0.06 d |
Tonkpi | 6.00 ± 0.34 f | 2.83 ± 0.09 d |
Bélier | 26.83 ± 0.24 cd | 18.82 ± 0.07 b |
Moronou | 34.60 ± 0.44 ab | 19.00 ± 0.13 b |
Iffou | 47.54 ± 0.40 b | 32.98 ± 0.12 a |
Béré | 7.29 ± 0.44 f | 10.21 ± 0.13 c |
Gbéké | 24.75 ± 0.16 c | 14.27 ± 0.05 bc |
Worodougou | 12.34 ± 0.12 cd | 9.92 ± 0.04 c |
Poro | 19.07 ± 0.20 c | 12.18 ± 0.06 c |
Tchologo | 2.46 ± 0.26 g | 2,55 ± 0,08 d |
Probability (p) | p < 0.0001 | p < 0.0001 |
AEZ | Agroecological Zone |
ANOVA | Analysis of Variance |
GPS | Global Positioning System |
p | Probability |
[1] | Naresh, P., Ratan, V., Kumar, U., Singh, T. & Biswas, S. K. Epidemiology and management of stem rot of chilli (Capsicum annuum L.) caused by Sclerotium rolfsii Sacc. Pharma Innovation. 2022, 11(12): 4877-4884. |
[2] | Chowdary, G. B. S. M., Jameema, G. & Charishma, K. V. Collar and stem rot pathogen-Sclerotium rolfsii: A review. Plant Archives. 2024. 24(1): 67-72. |
[3] | Okon, O. G., Uwaidem, Y. I., Rhouma, A., Antia, U. E., Okon, J. E. & Archibong, B. F. Unraveling the biology, effects and management methods of Sclerotium rolfsii infection in plants for sustainable agriculture. European Journal of Biological Research. 2025, 5(1): 1-10. |
[4] | Mullen, J. Southern blight, southern stem blight, white mold. The Plant Health Instructor. 2001,: |
[5] | Chilvers, M. I., Smith, D. L. & Rojas, J. A. A systems approach to managing soilborne diseases in sustainable agriculture. Annual Review of Phytopathology. 2022, 60, 305–326. |
[6] | Vakalounakis, D. J. & Fragkiadakis, G. A., Genetic diversity of Fusarium oxysporum isolates from cucumber: differentiation by pathogenicity, vegetative compatibility, and RAPD Fingerprinting. Phytopathology. 1999, 89: 161-168. |
[7] | Twizeyimana, M., Ojiambo, P. S. & Bandyopadhyay, R. Disease progression and yield loss associated with Sclerotium rolfsii in legume crops of sub-Saharan Africa. Plant Pathology. 2021, 70(2): 356–367. |
[8] | Remesal, E., Lucena, C., Azpilicueta, A., Landa, B. B. & Navas-Cortés, J. A. First report of Southern blight of pepper caused by Sclerotium rolfsii in Southern Spain. Plant Disease. 2010, 94: 280. Scientific Societies. |
[9] | Soro S., Doumbouya M. and Koné D. Potential infectious of soils fields of Tomato (Lycopersicon esculentum Mill.) in greenhouse and the age incidence facing Pythium sp. on the plants at Songon-Dabou in Ivory Coast. Tropicultura. 2008, 26 (3): 173-178. |
[10] | Bolou, B. B. A., Abo, K., Doumbouya, M., Kouamé, K. G., Kassi, K. F., Tuo, S., Koné, N., Kouassi, N. P. & Koné D. Analysis of sclerotinia expression due to Sclerotium rolfsii fungus in market gardening crops in the different agroecological zones of Côte d’Ivoire. Journal of Agriculture and Ecology Research International. 2016, 6(3): 1-12. |
[11] | Paparu, P., Acur A., Kato F., Acam C., Nakibuule J., Nkuboye A., Musoke S. & Mukankusi C., 2020. Morphological and pathogenic characterization of Sclerotium rolfsii, the causal agent of Southern Blight disease on common bean in Uganda. Plant Disease, 104: 2130-2137. |
[12] | Omer, E., Szlatenyi, D., Csenki, S., Alrwashdeh, J., Czako, I. & Láng, V. Farming practice variability and its implications for soil health in Agriculture: A Review. Agriculture. 2024, 14(2114): 1-27. |
[13] | Samaddar, S., Karp, D. S., Schmidt, R., Devarajan, N., McGarvey, J. A., Pires, A. F. A., Scow, K. Role of soil in the regulation of human and plant pathogens: soils’ contributions to people. Philosophical Transactions, Royal Society B, 2021, 376: 20200179. |
[14] | Gullino, M. L., Garibaldi, A., Gamliel, A. & Katan, J. Soil desinfestation: From soil treatment to soil and plant health. Plant Disease Feature. 2022. 106(6): 1541-1554. |
[15] | Tittonell, P. & Giller, K. E. When yield gaps are poverty traps: The paradigm of ecological intensification in African smallholder agriculture. Field Crops Research. 2013, 143: 76-90. |
[16] | Koike, S. T. First report of southern blight of Swiss Chard (Beta vulgaris subsp. cicla) caused by Sclerotium rolfsii in California. Plant Disease. 2014, 98(6): 849. |
[17] | Kator, L., Kalu, O. J. & Umgbe, A. M. Evaluation of the disease causing potential of Sclerotium rolfsii on tomato cultivars in bioassay (pathogenicity test). Annals of Biological Research. 2015, 6 (9): 7-15. |
[18] | Ake, A., Amian, A. R. F., Yeo, G. M., Etchian, A. O., Yao, L. A., Yapo, A. F. & Ble, M. C. Analyse Socio-demographique des agriculteurs et des pesticides utilisés dans la zone de marnage du lac Buyo (Côte d’Ivoire). European Scientific Journal. 2023, 19(18): 119. |
[19] | Kouame, K., Yapi, A. F., Gue, A. & Ipou, I. J. [Typology of producers and socio-technical contraints in food crops production in the District of Abidjan, South of Côte d’Ivoire]. Afrique Science. 2021, 19 (1): 76–89. |
[20] | Ballé, G. R. S. [Urban and peri-urban market gardening faced with the scarcity of production factors in Korhogo (IvoryCoast)]. Revue Africaine d’Environnement et d’Agriculture. 2025. 7(4): 56-66. |
[21] | N’Goran, C. K. Vegetable growers and Women empowerment: Their effect in poverty reduction in region Korhogo (Côte d’Ivoire). Journal of Agricultural Science. 2021, 13(9): 213. |
[22] | Wognin, A. S., Ouffoue, S. K., Assemand, E. F., Tano, K. & Koffi-Nevry, R. Perception des risques sanitaires dans le maraîchage à Abidjan, Côte d’Ivoire. International Journal of Biological and Chemical Sciences. 2014 7(5): 1829. |
[23] | Dosso, M., Jacob, N. & Angel, A. Understanding the ivorian market vegetables production: is the agroecological transition the right strategy? Agricultural Systems 2024, 218: 103971. |
[24] | Punja, Z. K. The biology, ecology, and control of Sclerotium rolfsii. Annual Review of Phytopathology. 1985, 23: 97-127. |
[25] | Kakela, J. M., Bazungula, N. B., Mabibi, P. L., Sese, C. K. & Makiese, M. N. [Economic and environmental analysis of the market gardening production system: case of N’djili CECOMAF in Kinshasa]. Revue Africaine d’Environnement et d’Agriculture. 2025, 8(1): 57-73. |
[26] | Punja, Z. K., Grogan, G. Effects of inorganic salts, carbonatebicarbonate anions, ammonia, and the modifying influence of pH on sclerotial germination of Sclerotium rolfsii. Phytopathology. 1982, 72: 635- 639. |
[27] | Sikirou, R., Zannou, A., Gbèhounou, G., Tosso, F. & Komlan, F. A. Fungicide effect of banana column juice on tomato southern blight caused by Sclerotium rolfsii: Technical and economic efficiency. African Journal of Agricultural Research. 2010, 5(23): 3230-3238. |
[28] | Srivastava, M. P. Plant clinic towards plant health and food security. ESci Journal of Plant Pathology. 2013, 02(03): 193-203. |
[29] | Kishnawat L. S., Banwari L., Ekta M. & Kamlesh G. Knowledge level of farmers regarding recommended cultivation practices of landraces. The Pharma Innovation. 2023. SP-12 (11): 151-153. |
APA Style
Bamba, B., Tuo, S., Coulibaly, S., Dembélé, A., Koné, D. (2025). Socio-epidemiological Characterization and Phytosanitary Diagnosis of Southern Blight Caused by Sclerotium rolfsii in Vegetable Production Systems in Côte d’Ivoire. American Journal of BioScience, 13(3), 69-87. https://doi.org/10.11648/j.ajbio.20251303.11
ACS Style
Bamba, B.; Tuo, S.; Coulibaly, S.; Dembélé, A.; Koné, D. Socio-epidemiological Characterization and Phytosanitary Diagnosis of Southern Blight Caused by Sclerotium rolfsii in Vegetable Production Systems in Côte d’Ivoire. Am. J. BioScience 2025, 13(3), 69-87. doi: 10.11648/j.ajbio.20251303.11
AMA Style
Bamba B, Tuo S, Coulibaly S, Dembélé A, Koné D. Socio-epidemiological Characterization and Phytosanitary Diagnosis of Southern Blight Caused by Sclerotium rolfsii in Vegetable Production Systems in Côte d’Ivoire. Am J BioScience. 2025;13(3):69-87. doi: 10.11648/j.ajbio.20251303.11
@article{10.11648/j.ajbio.20251303.11, author = {Barakissa Bamba and Seydou Tuo and Souleymane Coulibaly and Aminata Dembélé and Daouda Koné}, title = {Socio-epidemiological Characterization and Phytosanitary Diagnosis of Southern Blight Caused by Sclerotium rolfsii in Vegetable Production Systems in Côte d’Ivoire }, journal = {American Journal of BioScience}, volume = {13}, number = {3}, pages = {69-87}, doi = {10.11648/j.ajbio.20251303.11}, url = {https://doi.org/10.11648/j.ajbio.20251303.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajbio.20251303.11}, abstract = {Southern blight, or white mold, caused by Sclerotium rolfsii (Sacc.), represents an emerging and concerning phytosanitary constraint threatening the sustainability of vegetable production systems in Côte d’Ivoire, particularly in agro-ecological zones with high production density. This study aimed to establish an epidemiological and socio-agronomic diagnosis of the disease, analyze farmers’ perceptions, and evaluate local phytosanitary management practices from a sustainability perspective. A multidisciplinary and participatory approach was implemented between 2021 and 2022 across six agro-ecological zones, combining phytopathological surveys on 223 plots, semi-structured interviews with producers, and morpho-diagnostic laboratory analyses. The results revealed a high disease prevalence, affecting 64.57% of the plots, with a maximum incidence of 34.44% and severity reaching 22.59% in the AEZ IV. Tomato (Solanum lycopersicum) was the most affected host, followed by eggplant, peanut, and bean. Despite this widespread distribution, farmers’ knowledge remained limited. Only 52.91% of the producers recognized the symptoms from the images, and barely 13% could identify characteristic fungal structures (mycelium, sclerotia), which correlated with a high illiteracy rate (72.65%). The observed cultural practices (high-risk crop rotations, empirical fungicide applications, lack of effective prophylactic measures) were largely inappropriate. Multifactorial analyses indicated a significant influence of education level, gender, and geographic zone on farmers’ disease knowledge. These findings highlight the urgent need to strengthen farmers’ capacities through targeted training, integration of indigenous knowledge, and promotion of integrated management strategies within a context-specific framework for the sustainable management of southern blight in Ivorian vegetable production systems.}, year = {2025} }
TY - JOUR T1 - Socio-epidemiological Characterization and Phytosanitary Diagnosis of Southern Blight Caused by Sclerotium rolfsii in Vegetable Production Systems in Côte d’Ivoire AU - Barakissa Bamba AU - Seydou Tuo AU - Souleymane Coulibaly AU - Aminata Dembélé AU - Daouda Koné Y1 - 2025/07/22 PY - 2025 N1 - https://doi.org/10.11648/j.ajbio.20251303.11 DO - 10.11648/j.ajbio.20251303.11 T2 - American Journal of BioScience JF - American Journal of BioScience JO - American Journal of BioScience SP - 69 EP - 87 PB - Science Publishing Group SN - 2330-0167 UR - https://doi.org/10.11648/j.ajbio.20251303.11 AB - Southern blight, or white mold, caused by Sclerotium rolfsii (Sacc.), represents an emerging and concerning phytosanitary constraint threatening the sustainability of vegetable production systems in Côte d’Ivoire, particularly in agro-ecological zones with high production density. This study aimed to establish an epidemiological and socio-agronomic diagnosis of the disease, analyze farmers’ perceptions, and evaluate local phytosanitary management practices from a sustainability perspective. A multidisciplinary and participatory approach was implemented between 2021 and 2022 across six agro-ecological zones, combining phytopathological surveys on 223 plots, semi-structured interviews with producers, and morpho-diagnostic laboratory analyses. The results revealed a high disease prevalence, affecting 64.57% of the plots, with a maximum incidence of 34.44% and severity reaching 22.59% in the AEZ IV. Tomato (Solanum lycopersicum) was the most affected host, followed by eggplant, peanut, and bean. Despite this widespread distribution, farmers’ knowledge remained limited. Only 52.91% of the producers recognized the symptoms from the images, and barely 13% could identify characteristic fungal structures (mycelium, sclerotia), which correlated with a high illiteracy rate (72.65%). The observed cultural practices (high-risk crop rotations, empirical fungicide applications, lack of effective prophylactic measures) were largely inappropriate. Multifactorial analyses indicated a significant influence of education level, gender, and geographic zone on farmers’ disease knowledge. These findings highlight the urgent need to strengthen farmers’ capacities through targeted training, integration of indigenous knowledge, and promotion of integrated management strategies within a context-specific framework for the sustainable management of southern blight in Ivorian vegetable production systems. VL - 13 IS - 3 ER -