| Peer-Reviewed

Diversity and Abundance of Pest Insects Associated with Solanum aethiopicum Linnaeus, 1756 (Solanaceae) in Balessing (West-Cameroon)

Received: 24 August 2021    Accepted: 6 September 2021    Published: 14 September 2021
Views:       Downloads:
Abstract

Despite chemical treatments, all development stages of Solanum aethiopicum Linnaeus, 1756 plants are damaged in the field by insects in Balessing locality (West-Cameroon). During ecological surveys conducted from July to October 2020 in 11 plots presenting four development stages: seedlings (St1), fruit setting plants (St2), flowering phase plants (St3), and fruiting phase plants (St4). Insects active on stems, leaves, flowers and fruits, were captured, identified and the community structure was characterized. Abundance of each species and the part of the plant attacked were noted. Specimens were stored in vials containing 70° alcohol while immature insects were reared in the laboratory till the adult emergence. A total of 155 specimens collected in the field belonged to four orders, 13 families and 22 species. Lepidoptera and Hemiptera were most abundant (38.7% and 34.8% of the total collection respectively). Coleoptera and Orthoptera were least abundant (14.2% and 12.3% respectively). In the laboratory rearing, two Lepidoptera emerged from reared caterpillars: the Crambidae (Leucinodes orbonalis Guenee, 1854) and the Noctuidae [Helicoverpa armigera (Hübner, 1808)]. This gives a total of four orders, 14 families, 22 genera and 23 species associated with eggplant plants. In the field, plants were damaged by three borer species (13.0%) [Phrissotrichum grenieri (Desbrochers, 1875) (Coleoptera, Brentidae), Le. orbonalis (Lepidoptera, Crambidae) and H. armigera (Lepidoptera, Noctuidae)], by five phytophagous pest species (21.7%) [Lagria villosa (Fabricius, 1781) (Coleoptera, Tenebrionidae), Leptoglossus occidentalis Heidemann, 1910 (Hemiptera, Coreidae), Manduca sexta Linnaeus, 1763 (Lepidoptera, Sphingidae), Sphaerocoris annulus (Fabricius, 1775) (Hemiptera, Scutelleridae) and Taphronota ferruginea (Fabricius, 1781) (Orthoptera, Pyrgomorphidae)], three sap-feeding species (13.0%) [Dysdercus volkeri (Schmidt, 1932) (Hemiptera, Pyrrhocoridae), Edessa rufomarginata (De Geer, 1773) (Hemiptera, Pentatomidae) and Gonocerus acuteangularis (Goeze, 1778) (Hemiptera, Coreidae)] and 12 species of unknown pest-status. We recorded 11 pest species (47.8% of the total species richness) [six (26.1%) non-native and five (21.7%) native species]. Coleoptera presented a high number of species (34.8%) followed by Hemiptera (30.4%), Orthoptera (21.7%) and Lepidoptera (13.0%). Lepidoptera Crambidae (38.1%) was the most represented, followed by Hemiptera Pentatomidae (14.1%), Orthoptera Acrididae (10.2%), Hemiptera Coreidae and Hemiptera Pyrrhocoridae (7.7% respectively), Hemiptera Scutelleridae (5.2%), Coleoptera Tenebrionidae (5.1%), Coleoptera Chrysomelidae (4.5%), Orthoptera Pyrgomorphidae (3.9%) and Coleoptera Brentidae (1.3%). Three families (Carabidae, Sphingidae and Scarabeidae) were rare (<1% of the total collection). Chemicals were not efficient in Balessing, since entomofauna associated with eggplant plants remained diverse and consisted mostly of alien species. The situation calls for more research on the bio-ecology of the recorded pests with further goal of developing sustainable management strategies to reduce yield losses.

Published in American Journal of Entomology (Volume 5, Issue 3)
DOI 10.11648/j.aje.20210503.14
Page(s) 70-91
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Solanum aethiopicum, Pest Insects, Biodiversity, Balessing (Cameroon)

References
[1] Johnson, F., Gbon, G. A., Boga, J. P., & N’Goran, A. (2019). Incidence des insectes et des nématodes sur la production de l’aubergine Solanum aethiopicum Linné, 1756. Variété Djamba F1 dans la zone périurbaine d’Abidjan, Côte d’Ivoire. Int. J. Multidiscip., 6: 6-11.
[2] Schippers, R. R. (2000). African Indigenous Vegetables: An Overview of the Cultivated Species. Natural Resources Institute/ACP-EU Technical Centre for Agricultural and Rural Cooperation, Chatham, UK, Pp. 214.
[3] Daunay, M. C., & Hazra, P. (2012). Eggplant, Pp. 257-322. In K. V. Peter & P. Hazra (eds.), Handbook of Vegetables. TX: Studium Press, Houston.
[4] Lester, R. N., Hakiza, J. J. H., Stavropoulos, N., & Teixiera M. M. (1986). Variation patterns in the African Scarlet Eggplant, Solanum aethiopicum L, Pp. 283–307. In B. Styles (ed.), Intraspecific classification of wild and cultivated plants. Oxford University Press, Oxford.
[5] Daunay, M. C., Lester, R. N., & Ano, G. (1997). Les aubergines cultivées, Pp. 83-108. In A. Charrier, M. Jacquot, S. Hamon & D. Nicolas (eds.), L’Amélioration des plantes tropicales. CIRAD-ORSTOM, Montpellier.
[6] FAO (2021). Fruits et légumes - éléments essentiels de ton alimentation. Année internationale des fruits et des légumes, 2021. Note d’information. Rome (Italy), Pp. 86.
[7] FAO (2008). Vegetable production in the arid and semi-arid conditions in tropical Africa. FAO study on crop production and plant protection. Food and Agricultural Organization, Rome (Italy), Pp. 443.
[8] Mahmoud, H. A. F. (2000). Effect of sulphur and phosphorus on some eggplant cultivars under calcareous soil conditions. Bull. Fac. Agr. Cairo Univ., 51 (2): 209-225.
[9] Zenia, M., & Halina, B. (2008). Content of microelements in eggplant fruits depending on nitrogen fertilization and plant training method. J. Elem., 13 (2): 269-274.
[10] El-Nemr, M. A., EL-Desuki, M., Fawzy, Z. F. & El-Bassiony, A. M. (2012). Yield and fruit quality of eggplant as affected by NPK-sources and micronutrient application. J. Appl. Sci. Res., 8 (3): 1351-1357.
[11] Harish, B. N., Babu, P. A., Mahesh, T. & Venkatesh, Y. P. (2008). A cross–sectional study on the prevalence of food allergy to eggplant. Clin. Exp. Allergy, 22-34.
[12] Srinivasan, R. (2009). Insect and mite pests on eggplant: a field guide for identification and management. AVRDC - The World Vegetable Center, Shanhua, Taiwan, Pp. 64.
[13] Taher D, Solberg S. Ø., Prohens J., Chou Y., Rakha, M., & Wu T. (2017). World Vegetable Center Eggplant Collection: Origin, Composition, Seed Dissemination and Utilization in Breeding. Front. Plant Sci. 8: 1484.
[14] Asongwe, G. A., Yerima, B. P. K. & Tening, A. S. (2014). Vegetable production and the livelihood of farmers in Bamenda municipality, Cameroon. Int. J. Curr. Microbiol. Appli. Sc. 3 (12): 682-700.
[15] Basha, K., Ewang, P. N., & Ndemo, Okoyo, E. (2017). Factors Affecting productivity of Smallholder potato Growers in Bore District, Guji Zone, Oromia Regional State, Ethiopia. Dev. Ctry. Stud., 7 (9): 18-26.
[16] Ngameni, Tchamadeu, N., Kenko, Nkontcheu, D. B., & Djomo, Nana, E. (2017). Evaluation des facteurs de risques environnementaux liés à la mauvaise utilisation des pesticides par les maraîchers au Cameroun: le cas de Balessing à l’Ouest Cameroun. Afr. Sci., 13 (1): 91-100.
[17] Mengui, K. C., Oh, S., & Lee, S. H. (2019). The Technical Efficiency of Smallholder Irish Potato Producers in Santa Subdivision, Cameroon. Agriculture, 9 (12): 259.
[18] Daunay, M.-C., & Dalmasso, A. (1985). Multiplication de Meloidogyne javanica, M. incognita et M. arenaria sur divers Solarium. Rev. Hematol., 8 (1): 31-34.
[19] Rotino, G. L., Perri, E., Acciarri, N., Sunseri, F., & Arpaia, S. (1997). Development of eggplant varietal resistance to insects and diseases via plant breeding. Adv. Hortic. Sci, 11 (4): 193–201.
[20] Sridhar, J., Kumari, N., Venkateswarlu, V., Bhatnagar, A., Malik, K., Sharma, S., & Chakrabarti, S. (2020). Macrosiphum euphorbiae: A new aphid vector (Aphididae: Hemiptera) of PVY o and PLRV on potato from north western hills of India. J. Entomol. Zool. Stud., 8 (2): 1341-1344.
[21] Medakker, A., & Vijayaraghavan, V. (2007). Successful commercialization of insect-resistant eggplant by a public–private partnership: reaching and benefiting resource-poor farmers, Pp. 1829-1831. In A. Krattiger, R. T. Mahoney, L. Nelsen, J. A. Thomson, A. B. Bennett, K. Satyanarayana, G. D. Graff, C. Fernandez & S. P. Kowalski, (eds.), Intellectual Property Management in Health and Agricultural Innovation: A Handbook of Best Practices, Volume 1 and 2. Oxford: MIHR and Davis, Oxford.
[22] Obodji, A., Aboua, L. R. N., Tano, D. K. C., & Seri-Kouassi, B. P. (2016). Inventory of entomofaune associated with African eggplant (Solanum aethiopicum L.) according to the phonological stages assessment of damages caused by insect pests. J. Adv. Stud. Agric. Biol. Environ. Sci., 3 (2): 2455-0221.
[23] Dzokou, V. J., Lontchi, Fofe, N., Kamgaing, Kouam, B. H., Yaouba, A., & Tamesse, J. L. (2021). Fauna Pests Infesting Pepper (Piper nigrum L.) in Penja-Cameroon. Am. J. Entomol., 5 (2): 32-38.
[24] Maniania, N. K., Ekesi, S., Löhr, B., & Mwangi, F. (2001). Prospects for biological control of the western flower thrips, Frankliniella occidentalis, with the entomopathogenic fungus, Metarhizium anisopliae, on chrysanthemum. Mycopathologia 155: 229–235.
[25] Cook, D., Herbert, A., Akin, D. S., & Reed J. (2011). Biology, Crop Injury, and Management of Thrips (Thysanoptera: Thripidae) Infesting Cotton Seedlings in the United States. J. Integr. Pest Manag., 2 (2): 1-9.
[26] Babar, H. C., Asif, H. C., Abdul, G. L., Aslam, B., Imtaiz, A. N., Ammara, R., Fida, H. M., Mehroz, K., Farukh, A., & Zehua, Z. (2019). Insect Biodiversity in Brinjal Agro-Ecosystem. Pak. J. Sci. Ind. Res. A: Phys. Sci., 62B (3): 199-205.
[27] Ofori, E. S. K., Afful, N., Quartey, E. K., Osae, M., & Amoatey, H. M. (2015). Preliminary Ecological Studies of Insect Species Associated with Different Accessions of Eggplant (Solanum melongena L.) in Southern Ghana. J. Agric. Ecol., 4 (4): 199-210.
[28] Akunne, C. E., Ononye, B. U., & Mogbo, T. C. (2013). Insects: Friends or Enemies?. Glob. J. Biol. Agric. Health Sci., 2 (3): 134-140.
[29] Latif, M. A., Rahman, M. M., Islam, M. R., & Nuruddin, M. M. (2009). Survey of Arthropod Biodiversity in the Brinjal Field. J. Entomol., 6 (1): 28-34.
[30] Alam, M. Z., Crump, A. R., Haque, M. M., Islam, M. S., Hossain, E., Hasan, S. B., Hasan, S. B., & Hossain, M. S. (2016) Effects of Integrated Pest Management on Pest Damage and Yield Components in a Rice Agro-Ecosystem in the Barisal Region of Bangladesh. Front. Environ. Sci., 4: 22.
[31] Fontem, D. A., Songwalang, A. T., Berinyuy, J. E., & Schippers, R. R. (2003). Impact of fungicide applications for late blight management on huckleberry yields in Cameroon. Afr. Crop Sci. J., 11 (3): 163-170.
[32] Sonchieu, J., Ngassoum, M. B., Nantia Akono, E., & Laxman, P. S. (2018). Pesticide Applications on Some Vegetables Cultivated and Health Implications in Santa, North West-Cameroon. SSRG Int. J. Agric. Env., 4 (2): 39-46.
[33] Abossolo, S. A., Batha, R. A. S., & Djeugang, A. B. (2015). Identification des risques pluviométriques sur la culture du maïs dans l’arrondissement de Penka-Michel, dans les hautes terres de l’Ouest du Cameroun. Afr. Sci., 11 (2): 136-146.
[34] Ngamaleu-Siewe, B., Fouelifack-Nintidem, B., Yetchom-Fondjo, J. A., Moumite Mohamed, B., Tsekane, S. J., Kenne, E. L., Biawa-Kagmegni, M., Tuekam Kowa, P. S., Fantio, R. M., Yomon, A. K. & Kenne, M. (2021). Abundance and diversity of insects associated with Solanum tuberosum L. 1753 (Solanaceae) after insecticide treatments in Balessing (West-Cameroon). Am. J. Entomol., 5 (3): 51-69.
[35] Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel F. (2006). World Map of the Köppen-Geiger climate classification updated. Meteorol. Z., 15 (3): 259-263.
[36] Tsalefac, M., Ngoufo, R., Nkwambi, W., Djoumessi, Tatsangue, E., & Lengue Fobissie, B. (2003). Fréquences et quantités des précipitations journalières sur le territoire camerounais. Publ. Assoc. Intern. Climatol., 15: 359-367.
[37] JESBAD (2013). Connaître Balessing. Jeunesse Estudiantine et Scolaire Balessing de Douala (Cameroun), Pp. 69.
[38] Climate-Data.org. 2020. West climat. Dschang and Bafoussam. https://fr.climate-data.org/afrique/cameroon/west-1367/. Accessed on 10th September 2020.
[39] MINADER (2019). Liste des pesticides homologués au Cameroun au 18 Avril 2019. Liste réservée au grand public. Ministère de l’Agriculture et de Développement Rural. Commission Nationale d’Homologation des Produits Phytosanitaires et de Certification des Appareils de Traitement (CNHPPCZT), Yaoundé, Cameroun, Pp. 212.
[40] Delvare, G., & Aberlenc, H. P. (1989). Les Insectes d’Afrique et d’Amérique Tropicale. Clés pour la reconnaissance des familles. CIRAD. Laboratoire de Faunistique. Acridologie Opérationnelle. Montpellier, France, Pp. 302.
[41] Michel, C. (1991). La grande encyclopédie des insectes. Librairie Griind, Paris, Pp. 511.
[42] Poutouli, W., Silvie, P. & Aberlenc, H. P. (2011). Hétéroptères phytophages et prédateurs d’Afrique de l’Ouest. Edition Quae; CTA, Versailles (Paris), Pp. 80.
[43] Gourmel, C. (2014). Catalogue illustré des principaux insectes ravageurs et auxiliaires des cultures de Guyane. Coopérative BioSavane, Guyane, Pp. 77.
[44] Moré, M., Kitching, I. J., Cocucci, A. A., Roig-Junent, S., Claps, L. E., & Morrone, J. J. (2014). Lepidoptera: Sphingidae, Pp. 281-295. In S. Roig-Juñent, L. E. Claps & J. J. Morrone (eds.), Biodiversidad & Argentinos (volumen 4), Artrópodos, Universidad Nacional de Tucumán. Facultad de Ciencias Naturales.
[45] Mally, R., Korycinska, A., Agassiz, D. J. L., Hall, J., Hodgetts, J., & Nuss, M. (2015). Discovery of an unknown diversity of Leucinodes species damaging Solanaceae fruits in sub-Saharan Africa and moving in trade (Insecta, Lepidoptera, Pyraloidea). Zookeys, 472: 117-162.
[46] Kitching, I. J. (2020). Sphingidae Taxonomic Inventory. http://sphingidae.myspecies.info/. Consulted on 28 September 2020.
[47] Lindrothy, C. H. (1974). Handbooks for the identification of British Insects. Volume 4. Part 2. Coleoptera: Carabidae. Royal Entomological Society, London.
[48] Makarov, K. V. (1994). A key to the genera of the ground-beetle larvae (Coleoptera, Carabidae) of the Palaearctic region. Boll. Mus. reg. Sci. nat. Torino, 12 (1): 221-254
[49] Evans, A. V. (2014). Beetles of Eastern North America. Princeton University Press. Princeton, New Jersey, Pp. 560.
[50] Zettler, J. A., Mateer, S. C., Link-Pérez, M. A., Bailey, J., Demars, G., & Ness, T. (2016). To Key or Not to Key: A New Key to Simplify & Improve the Accuracy of Insect Identification. Am. Biol. Teach., 78 (8): 626-633.
[51] Micó, E., & Galante, E. (2003). Larval morphology and biology of four Netocia and Potosia species (Coleóptera: Scarabaeoidea: Cetoniidae: Cetoniinae). Eur. J. Entomol., 100 (1): 131-142.
[52] Baselga A. S & Novoa, F. (2005). The Western Palaearctic Neocrepidodera (Coleoptera: Chrysomelidae) of the N. impressa and N. ferruginea Species Groups. Ann. Entomol. Soc. Am., 98 (6): 896-907.
[53] Borowiec, L. (2007). Two new species of Charidotella Weise (Coleoptera: Chrysomelidae: Cassidinae: Cassidini), with a key to Charidotella sexpunctata group. Zootaxa, 1586: 59-66.
[54] Tronquet, M. (2014). Catalogue des Coléoptères de France. Association Roussillonnaise d’Entomologie, Perpignan. Supplément au Tome XXIII-R. A. R. E., Pp. 1052.
[55] MNHN & OFB (2021). Fiche de Stenosis sardoa (Küster, 1848). Inventaire national du patrimoine naturel (INPN), https://inpn.mnhn.fr/espece/cd_nom/244600. Accessed on 23rd August 2021.
[56] Freeman, P., & Lane, R. P. (1985). Bibionid and Scatopsid flies. Diptera; Bibionidae and Scatopsidae (Handbooks for the Identification of British Insects 9/7). Royal Entomological Society, London, UK, Pp. 74.
[57] Albrecht, A. C. (2017). Illustrated identification guide to the Nordic aphids feeding on Conifers (Pinophyta) (Insecta, Hemiptera, Sternorhyncha, Aphidomorpha). Eur. J. Taxon., 338: 1–160.
[58] Couilloud, R. (1989). Hétéroptères déprédateurs du cotonnier en Afrique et à Madagascar (Pyrrhocoridae, Pentatomidae, Coreidae, Alydidae, Rhopalidae, Lygaeidae). Cot. Fib. Trop., 44 (3): 185-226.
[59] Perez-Gelabert, D. E., & Thomas, D. B. (2005). Stink Bugs (Heteroptera: Pentatomidae) of the Island of Hispaniola, with seven new species from the Dominican Republic. Bol. SEA, 37: 319 −352.
[60] Brailovsky, H. (2014). Illustrated key for identification of the species included in the genus Leptoglossus (Hemiptera: Heteroptera: Coreidae: Coreini: Anisoscelini), and descriptions of five new species and new synonyms. Zootaxa, 3794 (3): 143-178.
[61] Brailovsky, H., & van, der, Heyden, T. (2019). New distributional notes and key to the known species of Leptoglossus Guérin-Méneville from Guatemala (Heteroptera: Coreidae: Coreinae: Anisoscelini). Rev. Chil. Entomol., 45 (1): 175-180.
[62] Packauskas, R. (1994). Key to the subfamilies and tribes of the New World Coreidae (Hemiptera), with a checklist of published keys to genera and species. Proc. Entomol. Soc. Wash., 96. 44-53.
[63] Broza, M., Blondheim, S., & Nevo, E. (2002). New species of mole crickets of the Gryllotalpa gryllotalpa group (Orthoptera: Gryllotalpidae) from Israel, based on morphology, song recordings, chromosomes and cuticular hydrocarbons, with comments on the distribution of the group in Europe and the Mediterranean region. Syst. Entomol., 23 (2): 125-135.
[64] Lecoq, M. (2010). Taxonomie et systématique des acridiens et principales espèces d’Afrique de l’Ouest. CIRAD, UPR Acridologie, Montpellier, France, Pp. 106.
[65] Popov, G. B., FishpooL, L. D. C., & Rowell, C. H. F. (2019). A review of the Acridinae s. str. (Orthoptera: Acridoidea: Acrididae) of eastern Africa with taxonomic changes and description of new taxa. J. Orthoptera Res., 28 (1): 37–105.
[66] Riley, E., Clark, S., & Seeno, T. (2003). Catalog of leaf beetles of America north of Mexico (Coleoptera: Megalopodidae, Orsodacnidae and Chrysomelidae, excluding Bruchinae). Coleopterists Society, Alaska, Canada, USA, Pp. 290.
[67] de Sousa, W. O., Ribeiro-Costa, C. S., & Rosado-Neto, G. H. (2019). A preliminary overview of the Brazilian Apioninae (Coleoptera: Brentidae) with an illustrated key for genera, and a checklist with distribution information. Biota Neotrop., 19 (4).
[68] Abdel-Dayem M. S., Fad H. H., El-Torkey A. M., Elgharbawy A. A., Aldryhim Y. N., Kondratieff B. C., Al Ansi A. N., & Aldhafer H. M. (2017). The beetle fauna (Insecta, Coleoptera) of the Rawdhat Khorim National Park, Central Saudi Arabia. ZooKeys, 653: 1–78.
[69] Borowiec, L., & Świętojańska, J. (2015). Checklist of tortoise beetles (Coleoptera, Chrysomelidae, Cassidinae) from Colombia with new data and description of a new species. ZooKeys, 518: 87–127.
[70] Bukejs, A. (2012). Taxonomical Structure and Biogeography of Leaf-Beetles (Coleoptera: Chrysomelidae S. L.) of the Latvian Fauna. Taxonomical structure and biogeography of leaf-beetles (Coleoptera: Chrysomelidae s. l.) of the Latvian fauna. Acta Biol. Univ. Daugavp., 12 (3): 25– 34.
[71] Cosandey, V., Chittaro Y., & Sanchez, A. (2017). Liste commentée des Scarabaeoidea (Coleoptera) de Suisse. Alp. Entomol., 1: 57–90.
[72] Ruzzier, E. & Martínez-Muñoz, C. (2021). First record of the invasive Lagria villosa (Fabricius, 1781) (Coleoptera: Tenebrionidae: Lagriinae) in Europe. Zootaxa, 4908: 147-150.
[73] Soldati F., & Soldati, L. (2018). Les Stenosini de la faune de France (Coleoptera, Tenebrionidae). Rev. As. Rousil. Entomol., 27 (1): 21-33.
[74] Çerçi, B., & Özgen, İ. (2021). Contribution to the Knowledge of Heteroptera (Hemiptera) Fauna of Elazığ Province with a New Record for the Fauna of Turkey. J. Het. Turk., 3 (1): 50-75.
[75] Ferenca R., Tamutis, V., & Stankuté, R. (2014). Data on new species of true bugs (Hemiptera: Heteroptera) of Lithuanian fauna. New Rare Lith. Ins. Species, 26: 19-25.
[76] EPPO (2010). Leptoglossus occidentalis: an invasive alien species spreading in Europe. EPPO Reporting Service 1: 8–12
[77] Dellapé P. M., Melo, M. C., Montemayor, S. I., Dellapé, G. & Brailovsky, H. (2015). Terrestrial Heteroptera (Hemiptera) from Moconá Provincial Park (Misiones, Argentina). Check List, 11 (3): 1662. Doi: 10.15560/11.3.1662.
[78] Kawahara, A., Breinholt, J., Ponce, F., Haxaire, J., Xiao, L., Lamarre, G., Rubinoff, D., & Kitching, I. (2013). Evolution of Manduca sexta hornworms and relatives: Biogeographical analysis reveals an ancestral diversification in Central America. Mol. Phylogenet. Evol., 68: 381–386.
[79] Kessler, A. & Baldwin, I. (2002). Manduca quinquemaculata's Optimization of Intra-Plant Oviposition to Predation, Food Quality, and Thermal Constraints. Ecology, 83: 2346-2354.
[80] Yetchom-Fondjo, J. A., Kekeunou, S., Kenne, M., Missoup, A. D., & Sheng-Quan, X. (2020). Diversity, abundance and distribution of grasshopper species (Orthoptera: Acrididea) in three different types of vegetation with different levels of anthropogenic disturbances in the Littoral Region of Cameroon. J. Insect Biodivers., 14 (1): 16-33.
[81] Roy, R. (2003). Les Acridiens du Nimba et de sa région, Pp. 311-391. In M. Lamotte & R. Roy (eds.), Le peuplement animal du mont Nimba (Guinée, Côte d’Ivoire, Liberia). Mémoires du Muséum national d’Histoire naturelle, Paris, T. 190.
[82] Uberti, A., Smaniotto, M. A., Giacobbo, C. L., Lovatto, M., Lugaresi, A., & Girardi, G. C. (2017). New insect pest at theculture of peach: Biology of Lagria villosa Fabricius, 1783 (Coleoptera: Tenebrionidae) fed with peach. Sci. Elec. Arch., 10 (5): 72-76.
[83] Kulijer, D., Dautbasic, M., Hrašovec, B., Vesnić, A., Šarić, Š., & Mujezinović, O. (2017). Leptoglossus occidentalis Heidemann, 1910 (Heteroptera: Coreidae) in Bosnia and Herzegovina - Current distribution and the earliest documented records. Šumarski list. 11-12: 577-582.
[84] Hizal, E., & Inan, M. (2012). Leptoglossus occidentalis (Heidemann, 1910) Is An Invasive Insect Species. J. For., 14 (21): 56-61.
[85] Dellapé, G., Colpo, K. D., Melo, M. C., Montemaor, S. I., & Dellapé, P. M. (2018). Biodiversity of Coreoidea and Pentatomidae (Heteroptera) from Atlantic forest protected areas. Insights into their conservation. An. Acad. Bras. Cienc., 90 (1): 109-122.
[86] Mestre, J., & Chiffaud, J. (2009). Acridiens du Cameroun et de République centrafricaine. Supplément au catalogue et atlas des acridiens d'Afrique de l'Ouest. Édition numérique, Pp. 170.
[87] Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological Statistics software pakage for education and data analysis. Palaeontol. Electron., 4: 9.
[88] Chao, A., Chadzon, R. L., Colwell, R. K., & Shen, T.-J. (2005). A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol. Lett., 8: 148-159.
[89] McGill B. J., Etienne R. S., Gray J. S., Alonso D., Anderson M. J., Benecha H. K., Dornelas M., Enquist B. J., Green J. L., He, F., Hurlbet A. H., Magurran A. E., Marquet P. A., Maurer B. A., Ostling A., Soykan C. U., Ugland K. I. & White E. P. 2007. Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecol. Lett., 10 (10): 995-1015.
[90] Biawa-Kagmegni, M., Foguieng-Saha, A. D., Guetsop-Ngouadjie, R. P., Tsekane, S. J., Fouelifack-Nintidem B. Moumite Mohamed, B., Yetchom-Fondjo, J. A., Ngamaleu-Siewe, B., Kenne, E. L., Tuekam Kowa P. S., Fantio R. M., Yomon, A. K., Mbenoun Masse, P. S., Kenne, M., & Fomena, A. (2021). Ants community structure in the urban and the city suburbs areas of Douala (Littoral-Cameroon). J. Insect Biodivers., 25 (2): 033–059.
[91] Johnson, J. B., & Omland, K. S. (2004). Model selection in ecology and evolution. Trends Ecol. Evol., 19 (2): 101-108.
[92] R Core Team, (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from http://www.R-project.org/.
[93] Wilson, J. B. (1991). Methods for fitting dominance/diversity curves. J. Veg. Sci., 2 (1): 35-46.
[94] Li, W. (2002). Zipf's Law Everywhere. Glottometrics, 5: 14-21.
[95] Ferreira, F. C., & Petrere-Jr., M. (2008). Comments about some species abundance patterns: classic, neutral, and niche partitioning models. Braz. J. Biol., 68 (4, Suppl.): 1003-1012.
[96] Marquardt D. W. 1963. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math., 11 (2): 431-441.
[97] Le, D.-H., Pham, C.-K., Nguyen, T. T. T., & Bui, T. T. (2012). Parameter extraction and optimization using Levenberg-Marquardt algorithm, Pp. 434–437. In Proceedings of 2012 IEEE conference. Fourth International Conference on Communications and Electronics (ICCE), Hanoi University of Science and Technology, Hanoi (Vietnam).
[98] Murthy, Z. V. P. (2014). Nonlinear Regression: Levenberg-Marquardt Method, Pp. 1-3. In E. Drioli, & L. Giorno, (eds.), Encyclopedia of Membranes. Springer-Verlag, Berlin, Heidelberg.
[99] Adja, N. A., Danho, M., Alabi, T. A. F., Gnago, A. J., Zimmer, J. Y., Francis, F., Kouassi, P., Baudoin, J. P., & Zoro Bi, I. A. (2014). Entomofauna associated with African oleaginous cucurbits (Lagenaria siceraria Molina (Standl. 1930) and Citrullus lanatus Thumb (Matsum & Nakai 1916)) and impact of pests on production. Int. J. Entomol., 50 (3-4): 301-310.
[100] Navasero, M. V. (2015). Insect Pests of Eggplant, Pp. 354-383. In F. M. Dela Cueva, C. B. Pascual, C. M. Bajet & T. U. Dalisay, (eds.), Pests and Diseases of Economically Important Crops in the Philippines. Pest Management Council of the Philippine, Inc. c/o Crop Protection Cluster, University of the Philippines Los Banos, College, Laguna.
[101] Joda, A. O., Ewete, F. K., & Pitan, O. O. R. (2014). Evaluation of Damage Induced by Aspavia armigera Fabricius on Different Rice (Oryza sativa Linn.) Varieties. J. Agric. Sci., 6 (11): 30-36.
[102] Bindu, S. P., Pramanik, A., & Padhi, G. K. (2015). Studies on Biology and physical measurements of shoot and fruit borer (Leucinodes orbonalis Guenee) of Brinjal in West Bengal, India. Glob. J. Biol. Agric. Health Sci., 4 (1): 215-219.
[103] Uno, S., Cotton, J., & Philpott, S. M. (2010). Diversity, abundance, and species composition of ants in urban green spaces. Urban Ecosyst., 13: 425–441.
[104] Solar, R. R. C., Barlow, J., Andersen, A. N., Schoereder, J. H., Berenguer, E., Ferreira, J. N., & Gardner, T. A. (2016). Biodiversity consequences of land-use change and forest disturbance in the Amazon: A multi-scale assessment using ant communities. Biol. Conserv., 197: 98–107.
[105] Holway, D. A., Lach, L., Suarez, A. V., Tsutsui, N. D., & Case, T. J. (2002). The causes and components of ant invasions. Annu. Rev. Ecol. Syst., 33: 181-233.
[106] Ruzzieri, E., & Martinez-Munoz, C. A. (2021). First record of the invasive Lagria villosa (Fabricius, 1781) (Coleoptera: Tenebrionidae: Lagriinae) in Europe. Zootaxa, 4908 (1): 147–150.
[107] van der Heyden, T. (2017). A recent record of Sphaerocoris annulus (Fabricius, 1775) in Zambia (Hemiptera: Heteroptera: Scutelleridae). Heteropteron, 49: 23-25.
[108] Silva, D. P., & Oliveira, P. S. (2010). Field Biology of Edessa rufomarginata (Hemiptera: Pentatomidae): Phenology, Behavior, and Patterns of Host Plant Use, Environ. Entomol. 39 (6): 1903–1910.
[109] Van der Heyden, T. (2017). First records of Gonocerus insidiator (Fabricius, 1787) (Hemiptera: Heteroptera: Coreidae: Coreinae: Gonocerini) for Albania. Arquivos Entomoloxicos, 18: 131-132.
[110] Shirale, D., Patil, M., & Parimi, S. (2017). Insecticide resistance in field populations of Leucinodes orbonalis (Lepidoptera: Crambidae) in India. Can. Entomol., 149 (3): 1-9.
[111] Gelhaus, J. K. (2005). The Crane-Fly Tipula (Tipula) oleracea (Diptera: Tipulidae). Reported From Michigan; A New Pest of Turfgrass in Eastern North America. Gt. Lakes Entomol., 38 (1): 97-99.
[112] Srinivasan, R., & Alvarez, J. M. (2011). Specialized Host Utilization of Macrosiphum euphorbiae on a Nonnative Weed Host, Solanum sarrachoides, and Competition with Myzus persicae. Environ. Entomol., 40 (2): 350-356.
[113] Galante, E., & Cartagena, M. C. (1999). Comparison of Mediterranean dung beetles (Coleoptera: Scarabaeoidea) in cattle and rabbit dung. Environ. Entomol., 28 (3): 420-424.
[114] Shea, K., & Chesson, P. (2002). Community ecology theory as a framework for biological invasions. Trends Ecol. Evol., 17 (4): 170-176.
Cite This Article
  • APA Style

    Boris Fouelifack-Nintidem, Jeanne Aggripine Yetchom-Fondjo, Sedrick Junior Tsekane, Babell Ngamaleu-Siewe, Edith Laure Kenne, et al. (2021). Diversity and Abundance of Pest Insects Associated with Solanum aethiopicum Linnaeus, 1756 (Solanaceae) in Balessing (West-Cameroon). American Journal of Entomology, 5(3), 70-91. https://doi.org/10.11648/j.aje.20210503.14

    Copy | Download

    ACS Style

    Boris Fouelifack-Nintidem; Jeanne Aggripine Yetchom-Fondjo; Sedrick Junior Tsekane; Babell Ngamaleu-Siewe; Edith Laure Kenne, et al. Diversity and Abundance of Pest Insects Associated with Solanum aethiopicum Linnaeus, 1756 (Solanaceae) in Balessing (West-Cameroon). Am. J. Entomol. 2021, 5(3), 70-91. doi: 10.11648/j.aje.20210503.14

    Copy | Download

    AMA Style

    Boris Fouelifack-Nintidem, Jeanne Aggripine Yetchom-Fondjo, Sedrick Junior Tsekane, Babell Ngamaleu-Siewe, Edith Laure Kenne, et al. Diversity and Abundance of Pest Insects Associated with Solanum aethiopicum Linnaeus, 1756 (Solanaceae) in Balessing (West-Cameroon). Am J Entomol. 2021;5(3):70-91. doi: 10.11648/j.aje.20210503.14

    Copy | Download

  • @article{10.11648/j.aje.20210503.14,
      author = {Boris Fouelifack-Nintidem and Jeanne Aggripine Yetchom-Fondjo and Sedrick Junior Tsekane and Babell Ngamaleu-Siewe and Edith Laure Kenne and Miric Biawa-Kagmegni and Patrick Steve Tuekam-Kowa and Abdel Kayoum Yomon and Rossi Merlin Kentsop-Tsafong and Armel Moise Dim-Mbianda and Martin Kenne},
      title = {Diversity and Abundance of Pest Insects Associated with Solanum aethiopicum Linnaeus, 1756 (Solanaceae) in Balessing (West-Cameroon)},
      journal = {American Journal of Entomology},
      volume = {5},
      number = {3},
      pages = {70-91},
      doi = {10.11648/j.aje.20210503.14},
      url = {https://doi.org/10.11648/j.aje.20210503.14},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.aje.20210503.14},
      abstract = {Despite chemical treatments, all development stages of Solanum aethiopicum Linnaeus, 1756 plants are damaged in the field by insects in Balessing locality (West-Cameroon). During ecological surveys conducted from July to October 2020 in 11 plots presenting four development stages: seedlings (St1), fruit setting plants (St2), flowering phase plants (St3), and fruiting phase plants (St4). Insects active on stems, leaves, flowers and fruits, were captured, identified and the community structure was characterized. Abundance of each species and the part of the plant attacked were noted. Specimens were stored in vials containing 70° alcohol while immature insects were reared in the laboratory till the adult emergence. A total of 155 specimens collected in the field belonged to four orders, 13 families and 22 species. Lepidoptera and Hemiptera were most abundant (38.7% and 34.8% of the total collection respectively). Coleoptera and Orthoptera were least abundant (14.2% and 12.3% respectively). In the laboratory rearing, two Lepidoptera emerged from reared caterpillars: the Crambidae (Leucinodes orbonalis Guenee, 1854) and the Noctuidae [Helicoverpa armigera (Hübner, 1808)]. This gives a total of four orders, 14 families, 22 genera and 23 species associated with eggplant plants. In the field, plants were damaged by three borer species (13.0%) [Phrissotrichum grenieri (Desbrochers, 1875) (Coleoptera, Brentidae), Le. orbonalis (Lepidoptera, Crambidae) and H. armigera (Lepidoptera, Noctuidae)], by five phytophagous pest species (21.7%) [Lagria villosa (Fabricius, 1781) (Coleoptera, Tenebrionidae), Leptoglossus occidentalis Heidemann, 1910 (Hemiptera, Coreidae), Manduca sexta Linnaeus, 1763 (Lepidoptera, Sphingidae), Sphaerocoris annulus (Fabricius, 1775) (Hemiptera, Scutelleridae) and Taphronota ferruginea (Fabricius, 1781) (Orthoptera, Pyrgomorphidae)], three sap-feeding species (13.0%) [Dysdercus volkeri (Schmidt, 1932) (Hemiptera, Pyrrhocoridae), Edessa rufomarginata (De Geer, 1773) (Hemiptera, Pentatomidae) and Gonocerus acuteangularis (Goeze, 1778) (Hemiptera, Coreidae)] and 12 species of unknown pest-status. We recorded 11 pest species (47.8% of the total species richness) [six (26.1%) non-native and five (21.7%) native species]. Coleoptera presented a high number of species (34.8%) followed by Hemiptera (30.4%), Orthoptera (21.7%) and Lepidoptera (13.0%). Lepidoptera Crambidae (38.1%) was the most represented, followed by Hemiptera Pentatomidae (14.1%), Orthoptera Acrididae (10.2%), Hemiptera Coreidae and Hemiptera Pyrrhocoridae (7.7% respectively), Hemiptera Scutelleridae (5.2%), Coleoptera Tenebrionidae (5.1%), Coleoptera Chrysomelidae (4.5%), Orthoptera Pyrgomorphidae (3.9%) and Coleoptera Brentidae (1.3%). Three families (Carabidae, Sphingidae and Scarabeidae) were rare (<1% of the total collection). Chemicals were not efficient in Balessing, since entomofauna associated with eggplant plants remained diverse and consisted mostly of alien species. The situation calls for more research on the bio-ecology of the recorded pests with further goal of developing sustainable management strategies to reduce yield losses.},
     year = {2021}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Diversity and Abundance of Pest Insects Associated with Solanum aethiopicum Linnaeus, 1756 (Solanaceae) in Balessing (West-Cameroon)
    AU  - Boris Fouelifack-Nintidem
    AU  - Jeanne Aggripine Yetchom-Fondjo
    AU  - Sedrick Junior Tsekane
    AU  - Babell Ngamaleu-Siewe
    AU  - Edith Laure Kenne
    AU  - Miric Biawa-Kagmegni
    AU  - Patrick Steve Tuekam-Kowa
    AU  - Abdel Kayoum Yomon
    AU  - Rossi Merlin Kentsop-Tsafong
    AU  - Armel Moise Dim-Mbianda
    AU  - Martin Kenne
    Y1  - 2021/09/14
    PY  - 2021
    N1  - https://doi.org/10.11648/j.aje.20210503.14
    DO  - 10.11648/j.aje.20210503.14
    T2  - American Journal of Entomology
    JF  - American Journal of Entomology
    JO  - American Journal of Entomology
    SP  - 70
    EP  - 91
    PB  - Science Publishing Group
    SN  - 2640-0537
    UR  - https://doi.org/10.11648/j.aje.20210503.14
    AB  - Despite chemical treatments, all development stages of Solanum aethiopicum Linnaeus, 1756 plants are damaged in the field by insects in Balessing locality (West-Cameroon). During ecological surveys conducted from July to October 2020 in 11 plots presenting four development stages: seedlings (St1), fruit setting plants (St2), flowering phase plants (St3), and fruiting phase plants (St4). Insects active on stems, leaves, flowers and fruits, were captured, identified and the community structure was characterized. Abundance of each species and the part of the plant attacked were noted. Specimens were stored in vials containing 70° alcohol while immature insects were reared in the laboratory till the adult emergence. A total of 155 specimens collected in the field belonged to four orders, 13 families and 22 species. Lepidoptera and Hemiptera were most abundant (38.7% and 34.8% of the total collection respectively). Coleoptera and Orthoptera were least abundant (14.2% and 12.3% respectively). In the laboratory rearing, two Lepidoptera emerged from reared caterpillars: the Crambidae (Leucinodes orbonalis Guenee, 1854) and the Noctuidae [Helicoverpa armigera (Hübner, 1808)]. This gives a total of four orders, 14 families, 22 genera and 23 species associated with eggplant plants. In the field, plants were damaged by three borer species (13.0%) [Phrissotrichum grenieri (Desbrochers, 1875) (Coleoptera, Brentidae), Le. orbonalis (Lepidoptera, Crambidae) and H. armigera (Lepidoptera, Noctuidae)], by five phytophagous pest species (21.7%) [Lagria villosa (Fabricius, 1781) (Coleoptera, Tenebrionidae), Leptoglossus occidentalis Heidemann, 1910 (Hemiptera, Coreidae), Manduca sexta Linnaeus, 1763 (Lepidoptera, Sphingidae), Sphaerocoris annulus (Fabricius, 1775) (Hemiptera, Scutelleridae) and Taphronota ferruginea (Fabricius, 1781) (Orthoptera, Pyrgomorphidae)], three sap-feeding species (13.0%) [Dysdercus volkeri (Schmidt, 1932) (Hemiptera, Pyrrhocoridae), Edessa rufomarginata (De Geer, 1773) (Hemiptera, Pentatomidae) and Gonocerus acuteangularis (Goeze, 1778) (Hemiptera, Coreidae)] and 12 species of unknown pest-status. We recorded 11 pest species (47.8% of the total species richness) [six (26.1%) non-native and five (21.7%) native species]. Coleoptera presented a high number of species (34.8%) followed by Hemiptera (30.4%), Orthoptera (21.7%) and Lepidoptera (13.0%). Lepidoptera Crambidae (38.1%) was the most represented, followed by Hemiptera Pentatomidae (14.1%), Orthoptera Acrididae (10.2%), Hemiptera Coreidae and Hemiptera Pyrrhocoridae (7.7% respectively), Hemiptera Scutelleridae (5.2%), Coleoptera Tenebrionidae (5.1%), Coleoptera Chrysomelidae (4.5%), Orthoptera Pyrgomorphidae (3.9%) and Coleoptera Brentidae (1.3%). Three families (Carabidae, Sphingidae and Scarabeidae) were rare (<1% of the total collection). Chemicals were not efficient in Balessing, since entomofauna associated with eggplant plants remained diverse and consisted mostly of alien species. The situation calls for more research on the bio-ecology of the recorded pests with further goal of developing sustainable management strategies to reduce yield losses.
    VL  - 5
    IS  - 3
    ER  - 

    Copy | Download

Author Information
  • Department of the Biology and Physiology of Animal Organisms, University of Douala, Douala, Cameroon

  • Department of the Biology and Physiology of Animal Organisms, University of Douala, Douala, Cameroon

  • Department of the Biology and Physiology of Animal Organisms, University of Douala, Douala, Cameroon

  • Department of the Biology and Physiology of Animal Organisms, University of Douala, Douala, Cameroon

  • Department of the Biology and Physiology of Animal Organisms, University of Douala, Douala, Cameroon

  • Department of the Biology and Physiology of Animal Organisms, University of Douala, Douala, Cameroon

  • Department of the Biology and Physiology of Animal Organisms, University of Douala, Douala, Cameroon

  • Department of the Biology and Physiology of Animal Organisms, University of Douala, Douala, Cameroon

  • Department of the Biology and Physiology of Animal Organisms, University of Douala, Douala, Cameroon

  • Department of the Biology and Physiology of Animal Organisms, University of Douala, Douala, Cameroon

  • Department of the Biology and Physiology of Animal Organisms, University of Douala, Douala, Cameroon

  • Sections