Predictive Modeling of Droplet Efficiency in MIG Welding of Mild Steel Using Artificial Neural Networks: Experimental Validation and Process Optimization
Published in | American Journal of Mechanical and Materials Engineering (Volume 9, Issue 3) |
DOI | 10.11648/j.ajmme.20250903.11 |
Page(s) | 76-84 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2025. Published by Science Publishing Group |
MIG Welding, Droplet Efficiency, Artificial Neural Networks (ANN), Central Composite Design (CCD), Welding Process Optimization
Factor | Name | Units | Minimum (−1) | Maximum (+1) | Mean | Std. Dev. |
---|---|---|---|---|---|---|
A | Current | A | 240.00 | 270.00 | 250.50 | 8.26 |
B | Voltage | V | 23.00 | 26.00 | 24.05 | 0.8256 |
C | Wire feed rate | mm/s | 2.40 | 3.00 | 2.61 | 0.1651 |
Run | Current (A) | Voltage (V) | Wire Feed (mm/s) | Exp. Droplet Eff. (%) |
---|---|---|---|---|
1 | 250 | 24 | 2.6 | 26.23 |
2 | 260 | 23 | 2.8 | 24.41 |
3 | 240 | 25 | 2.8 | 23.12 |
4 | 250 | 24 | 2.6 | 26.23 |
5 | 250 | 24 | 2.6 | 26.23 |
6 | 250 | 26 | 2.6 | 21.77 |
7 | 260 | 25 | 2.8 | 25.49 |
8 | 250 | 24 | 2.6 | 26.80 |
9 | 240 | 25 | 2.4 | 26.64 |
10 | 250 | 24 | 2.6 | 26.23 |
11 | 260 | 23 | 2.4 | 27.75 |
12 | 240 | 24 | 2.6 | 27.90 |
13 | 260 | 25 | 2.4 | 30.51 |
14 | 250 | 23 | 2.6 | 26.66 |
15 | 270 | 24 | 2.6 | 27.89 |
16 | 250 | 24 | 2.4 | 28.79 |
17 | 250 | 24 | 3.0 | 28.67 |
18 | 240 | 23 | 2.4 | 30.54 |
19 | 240 | 23 | 2.8 | 30.82 |
20 | 250 | 24 | 2.6 | 26.23 |
Run | Current (A) | Voltage (V) | Wire Feed (mm/s) | Exp. Droplet Eff. (%) | ANN Prediction (%) | Error (%) |
---|---|---|---|---|---|---|
1 | 250 | 24 | 2.6 | 26.23 | 26.2268 | 0.0032 |
2 | 260 | 23 | 2.8 | 24.41 | 24.4565 | -0.0465 |
3 | 240 | 25 | 2.8 | 23.12 | 22.8590 | 0.2610 |
4 | 250 | 24 | 2.6 | 26.23 | 26.2268 | 0.0032 |
5 | 250 | 24 | 2.6 | 26.23 | 26.2268 | 0.0032 |
6 | 250 | 26 | 2.6 | 21.77 | 21.8203 | -0.0503 |
7 | 260 | 25 | 2.8 | 25.49 | 25.4086 | 0.0814 |
8 | 250 | 24 | 2.6 | 26.80 | 26.8268 | -0.0268 |
9 | 240 | 25 | 2.4 | 26.64 | 26.6422 | -0.0022 |
10 | 250 | 24 | 2.6 | 26.23 | 26.2268 | 0.0032 |
11 | 260 | 23 | 2.4 | 27.75 | 27.9043 | -0.1543 |
12 | 240 | 24 | 2.6 | 27.90 | 27.9054 | -0.0054 |
13 | 260 | 25 | 2.4 | 30.51 | 30.5093 | 0.0007 |
14 | 250 | 23 | 2.6 | 26.66 | 26.6622 | -0.0022 |
15 | 270 | 24 | 2.6 | 27.89 | 27.8927 | -0.0027 |
16 | 250 | 24 | 2.4 | 28.79 | 28.7816 | 0.0084 |
17 | 250 | 24 | 3.0 | 28.67 | 28.7343 | -0.0643 |
18 | 240 | 23 | 2.4 | 30.54 | 30.5416 | -0.0016 |
19 | 240 | 23 | 2.8 | 30.82 | 29.9711 | 0.8489 |
20 | 250 | 24 | 2.6 | 26.23 | 26.2268 | 0.0032 |
ANN | Artificial Neural Network |
Ar | Argon |
CCD | Central Composite Design |
CO2 | Carbon Dioxide |
DoE | Design of Experiments |
FEM | Finite Element Method |
FSW | Friction Stir Welding |
GMAW | Gas Metal Arc Welding |
LFW | Linear Friction Welding |
MIG | Metal Inert Gas (welding) |
MOORA | Multi-Objective Optimization on the Basis of Ratio Analysis |
MSE | Mean Square Error |
RSM | Response Surface Methodology |
SDV | Standard Deviation |
TOPSIS | Technique for Order Preference by Similarity to Ideal Solution |
[1] | Achebo, J. and Odinikuku, W. E. (2015): Optimization of Gas Metal Arc Welding Process Parameters Using Standard Deviation (SDV) and Multi-Objective Optimization on the Basis of Ratio Analysis (MOORA). Journal of Minerals and Materials Characterization and Engineering (JMMCE), 3, pp. 298-308. |
[2] | Otimeyin, A. W., Achebo, J. I., & Frank, U. (2025). Advanced Modeling and Optimization of Weldment Responses Using Statistical and Metaheuristic Techniques. American Journal of Mechanical and Materials Engineering, 9(1), 25-36. |
[3] | Anowa, H. D., Achebo, J. I., Ozigagun, A., and Etin-Osa, E. C. (2018): Analysis of weld molten metal kinematic viscosity of TIG mild steel weld. International Journal of Advanced Engineering and Management Research, 3, ISSN: 2456-3676. |
[4] | Achebo, J. I., 2011. Optimization of GMAW protocols and parameters for improving weld strength quality applying the Taguchi method. Proceedings of the World Congress on Engineering, 1, pp. 6–8. |
[5] | Achebo, J. I., 2012. Complex behavior of forces influencing molten weld metal flow based on static force balance theory. Physics Procedia, 25, pp. 317–324. |
[6] | Achebo, J. I. and Etin-Osa, C. E., 2017. Optimization of weld quality properties using Analytical Hierarchy Process (AHP). Journal of the Nigerian Association of Mathematical Physics, 39, pp. 389–396. |
[7] | Erhunmwun, I. D. and Etin-Osa, C. E. (2019): Temperature distribution in centrifugal casting with partial solidification during pouring. Materials and Engineering Technology. |
[8] | V. A Ijoni, J. I. Achebo, K. O. Obahiagbon and O. F Uwoghiren, 2025. Investigation of Solidus Temperature in MIG Welding: Experimental Analysis and Predictive Modelling Using RSM and ANN. Journal of Civil and Environmental Systems Engineering. Vol. 22, No. 1, 2025. |
[9] | Achebo, J. and Omoregie, M., 2015. Application of multi-criteria decision making optimization tool for determining mild steel weld properties and process parameters using the TOPSIS. International Journal of Materials Science and Applications, 4(3), pp. 149–158. |
[10] | Ogbeide, O. O. and Etin-Osa, E. C., 2023. Prediction of hardness of mild steel welded joints in a tungsten inert gas welding process using artificial neural network. JASEM, 27(11), pp. 2381-2386. |
[11] | Achebo, J., 2015. Development of a predictive model for determining mechanical properties of AA 6061 using regression analysis. Production & Manufacturing Research, 3(1), pp. 169–184. |
[12] | Etin-Osa, E. C. and Ogbeide, O. O. (2021): Optimization of the weld bead volume of tungsten inert gas mild steel using response surface methodology. NIPES Journal of Science and Technology Research, 3(4), pp. 314-321. |
[13] | Etin-Osa, C. E. and Achebo, J. I. (2017): Analysis of optimum butt welded joint for mild steel components using FEM (ANSYS). American Journal of Naval Architecture and Marine Engineering, 2(3), pp. 61-70. |
[14] | Imhansoloeva, N. A., Achebo, J. I., Obahiagbon, K., Osarenmwinda, J. O., and Etin-Osa, C. E. (2018): Optimization of the deposition rate of tungsten inert gas mild steel using response surface methodology. Scientific Research Publishing, 10(11): 784-804. |
[15] | Jamrozik, W., Górka, J., and Kik, T. (2021): Temperature-based prediction of joint hardness in TIG welding of Inconel 600, 625, and 718 nickel superalloys. Materials, 14, p. 442. |
[16] | Lu, S., Lu, Y., Shen, H., Chen, Y., Zhang, Z., and Sun, X. (2019): Investigation on microstructure and mechanical properties of a low-temperature multi-pass tungsten inert gas welding process. Journal of Materials Processing Technology, 265, pp. 1-9. |
[17] | Prabhu, R. T., Swaminathan, J., and Manohar, P. (2020): Experimental analysis and parametric optimization of weld bead geometry in TIG welding of stainless steel. Advances in Materials Science and Engineering, 2020, Article ID 7539826. |
[18] | Victor Avokerie Ijoni, Joseph Ifeanyi Achebo, Collins Eruogun Etin-Osa, 2025. The Influence of Process Parameters on Weld Droplet Diameter in MIG Welding: An Experimental Study. American Journal of Materials Synthesis and Processing. |
[19] | Jorge, J. C. F., Souza, L. F. G. D., Mendes, M. C., Bott, I. S., Araújo, L. S., Santos, V. R. D., Rebello, J. M. A., and Evans, G. M. (2021): Microstructure characterization and its relationship with impact toughness of C-Mn and high-strength low alloy steel weld metals - a review. Journal of Materials Research and Technology, 10, pp. 471–501. |
[20] | Ravindran, M., and Janarthanan, B. (2019): Investigations on the effect of preheating and post-weld heat treatment on the mechanical and metallurgical properties of TIG welded joints of Inconel 718. Materials Today: Proceedings, 27, pp. 2440-2444. |
[21] | Shaikh, S., and Chourasia, D. (2021): Mechanical and microstructural characterization of dissimilar metal TIG welding between austenitic stainless steel and mild steel. Materials Today: Proceedings, 43(Part 2), pp. 1626–1631. |
[22] | Aoki, Y., Kuroiwa, R., Fujii, H., Murayama, G., and Yasuyama, M. (2019): Linear friction stir welding of medium carbon steel at low temperature. ISIJ International, 59(10), pp. 1853–1859. |
[23] | Kuroiwa, R., Liu, H., Aoki, Y., Yoon, S., Fujii, H., Murayama, G., and Yasuyama, M. (2020): Microstructure control of medium carbon steel joints by low-temperature linear friction welding. Science and Technology of Welding and Joining, 25(1), pp. 1–9. |
[24] | Ogbeide, O. O., Afolalu, T. D., and Etin-Osa, C. E. (2021): Investigation into microstructural and mechanical properties of friction stir welded aluminum alloy using optimized welding parameters. Journal of Materials Science Research and Reviews, 8(3), pp. 21-30. |
[25] | Quintana, E., and Amaya, M. (2022): Advances in the development of hybrid laser arc welding processes: A review. Welding in the World, 66(6), pp. 1365–1380. |
[26] | Mughal, M. P., and Sajjad, M. (2022): Application of Six Sigma DMAIC to improve weld quality in shipbuilding. Shipbuilding Technology and Research, 2(4), pp. 234-240. |
[27] | Deutsches Institut DIN, für Normung e. V. (2023): Schweißen - Schmelzschweißverbindungen an Stahl, Nickel, Titan und deren Legierungen (ohne Strahlschweißen) - Bewertungsgruppen von Unregelmäßigkeiten (ISO 5817:2023). Berlin: DIN Media GmbH. |
[28] | Li, S., Liu, Q., Rui, S.-S., et al. (2022): Fatigue crack initiation behaviors around defects induced by welding thermal cycle in superalloy IN617B. International Journal of Fatigue, 158, p. 106745. |
[29] | Kataria, R., Pratap Singh, R., Sharma, P., and Phanden, R. K. (2021): Welding of super alloys: A review. Materials Today: Proceedings, 38, pp. 265–268. |
[30] | Choi, J. W., Li, W., Ushioda, K., Yamamoto, M., and Fujii, H. (2022): Strengthening mechanism of high-pressure linear friction welded AA7075-T6 joint. Materials Characterization, 191, p. 112112. |
[31] | Mani, K., Uthayakumar, M., Kumar, M. P., and Sekar, K. (2019): Optimization of friction welding parameters on microstructure and mechanical properties of Al6061 and AISI 304 dissimilar joint. Procedia Manufacturing, 30, pp. 505-512. |
APA Style
Ijoni, V. A., Achebo, J. I. (2025). Predictive Modeling of Droplet Efficiency in MIG Welding of Mild Steel Using Artificial Neural Networks: Experimental Validation and Process Optimization. American Journal of Mechanical and Materials Engineering, 9(3), 76-84. https://doi.org/10.11648/j.ajmme.20250903.11
ACS Style
Ijoni, V. A.; Achebo, J. I. Predictive Modeling of Droplet Efficiency in MIG Welding of Mild Steel Using Artificial Neural Networks: Experimental Validation and Process Optimization. Am. J. Mech. Mater. Eng. 2025, 9(3), 76-84. doi: 10.11648/j.ajmme.20250903.11
@article{10.11648/j.ajmme.20250903.11, author = {Victor Avokerie Ijoni and Joseph Ifeanyi Achebo}, title = {Predictive Modeling of Droplet Efficiency in MIG Welding of Mild Steel Using Artificial Neural Networks: Experimental Validation and Process Optimization }, journal = {American Journal of Mechanical and Materials Engineering}, volume = {9}, number = {3}, pages = {76-84}, doi = {10.11648/j.ajmme.20250903.11}, url = {https://doi.org/10.11648/j.ajmme.20250903.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajmme.20250903.11}, abstract = {Predictive Modeling of Droplet Efficiency in MIG Welding of Mild Steel Using Artificial Neural Networks: Experimental Validation and Process Optimization }, year = {2025} }
TY - JOUR T1 - Predictive Modeling of Droplet Efficiency in MIG Welding of Mild Steel Using Artificial Neural Networks: Experimental Validation and Process Optimization AU - Victor Avokerie Ijoni AU - Joseph Ifeanyi Achebo Y1 - 2025/09/26 PY - 2025 N1 - https://doi.org/10.11648/j.ajmme.20250903.11 DO - 10.11648/j.ajmme.20250903.11 T2 - American Journal of Mechanical and Materials Engineering JF - American Journal of Mechanical and Materials Engineering JO - American Journal of Mechanical and Materials Engineering SP - 76 EP - 84 PB - Science Publishing Group SN - 2639-9652 UR - https://doi.org/10.11648/j.ajmme.20250903.11 AB - Predictive Modeling of Droplet Efficiency in MIG Welding of Mild Steel Using Artificial Neural Networks: Experimental Validation and Process Optimization VL - 9 IS - 3 ER -