The performances of Custom A-, D-, and I-optimal designs on non-standard second-order models are examined using the alphabetic A-, D-, and G-optimality efficiencies, as well as the Average Variance of Prediction. Designs of varying sizes are constructed with the help of JMP Pro 14 software and are customized for specified non-standard models, optimality criteria, prespecified experimental runs, and a specified range of input variables. The results reveal that Custom-A optimal designs perform generally better in terms of G-efficiency. They show high superiority to A-efficiency as the worst G-efficiency value of the created Custom-A optimal designs exceeds the best A-efficiency value of the designs, and also does well in terms of D-efficiency. Custom-D optimal designs perform generally best in terms of G-efficiency, as the worst G-efficiency value exceeds all A- and D-efficiency values. Custom-I optimal designs perform generally best in terms of G-efficiency as the worst G-efficiency value is better than the best A-efficiency value and performs generally better than the corresponding D-efficiency values. For the Average Variance of Prediction, Custom A- and I-optimal designs perform competitively well, with relatively low Average Variances of Prediction. On the contrary, the Average Variance of Prediction is generally larger for Custom-D optimal designs. Hence when seeking designs that minimize the variance of the predicted response, it suffices to construct Custom A-, D-, or I-optimal designs, with a preference for Custom-D optimal designs.
Published in | American Journal of Theoretical and Applied Statistics (Volume 13, Issue 5) |
DOI | 10.11648/j.ajtas.20241305.11 |
Page(s) | 92-114 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2024. Published by Science Publishing Group |
Custom A-, D-, and I-optimal Designs, Non-Standard Second-Order Model, Average Variance of Prediction, D-, G-, A-efficiency
Number of factors | Number of parameters | Number of design points (N) | D-efficiency (%) | G-efficiency (%) | A-efficiency (%) | Average Variance of Prediction (AVP) |
---|---|---|---|---|---|---|
3 | 5 | 9 | 61.32132 | 74.07407 | 48.30918 | 0.323333 |
10 | 61.77937 | 71.05871 | 47.20342 | 0.298081 | ||
11 | 62.80609 | 79.03737 | 46.8311 | 0.27298 | ||
12 | 61.17072 | 69.28839 | 47.25415 | 0.25488 | ||
13 | 63.43927 | 92.31354 | 47.5631 | 0.231168 | ||
14 | 63.14763 | 60.47968 | 48.04881 | 0.208608 | ||
15 | 64.68813 | 80 | 48.9083 | 0.191468 | ||
27 | 65.15811 | 83.22195 | 49.24383 | 0.105461 | ||
3 | 6 | 9 | 58.11824 | 66.66667 | 47.61905 | 0.351111 |
10 | 58.70716 | 60.00001 | 46.51177 | 0.326014 | ||
11 | 59.90774 | 58.2449 | 46.2004 | 0.300606 | ||
12 | 61.81098 | 89.0614 | 47.27213 | 0.271109 | ||
13 | 65.1364 | 85.2071 | 49.01293 | 0.242778 | ||
14 | 63.71614 | 82.20551 | 49.09363 | 0.22378 | ||
15 | 62.64027 | 73.84615 | 49.5941 | 0.205357 | ||
27 | 65.38677 | 85.82375 | 49.74763 | 0.114556 | ||
3 | 7 | 9 | 57.44635 | 57.60852 | 43.30225 | 0.432184 |
10 | 61.98699 | 58.6284 | 44.39605 | 0.385574 | ||
11 | 66.98854 | 84.84848 | 46.28099 | 0.341667 | ||
12 | 64.36823 | 81.63543 | 48.55338 | 0.29485 | ||
13 | 64.6098 | 80.76923 | 50.48077 | 0.256667 | ||
14 | 62.73272 | 77.35849 | 50.10183 | 0.237669 | ||
15 | 61.21732 | 74.66667 | 50.09585 | 0.219246 | ||
27 | 64.47407 | 80.65844 | 50.9151 | 0.121501 | ||
4 | 9 | 13 | 57.28011 | 65.42829 | 42.28961 | 0.352008 |
14 | 56.75164 | 80.16152 | 42.78596 | 0.323169 | ||
15 | 56.19102 | 74.49687 | 43.4051 | 0.295676 | ||
16 | 56.00956 | 73.65331 | 43.93409 | 0.273887 | ||
17 | 55.95376 | 70.8992 | 44.33641 | 0.25519 | ||
18 | 56.24087 | 70.28544 | 43.77273 | 0.24469 | ||
21 | 58.53976 | 72.40759 | 43.80603 | 0.208551 | ||
25 | 57.67718 | 79.99164 | 44.21452 | 0.176553 |
Number of factors | Number of parameters | Number of design points (N) | D-efficiency (%) | G-efficiency (%) | A-efficiency (%) | Average Variance of Prediction (AVP) |
---|---|---|---|---|---|---|
3 | 5 | 9 | 63.59863 | 74.07407 | 43.01075 | 0.603333 |
10 | 64.0722 | 82.85965 | 41.49901 | 0.336215 | ||
11 | 64.82191 | 77.92208 | 40.40404 | 0.313889 | ||
12 | 65.13999 | 71.9697 | 43.18182 | 0.269883 | ||
13 | 65.88084 | 92.30769 | 47.09576 | 0.22889 | ||
14 | 65.59811 | 90.40147 | 45.50675 | 0.21977 | ||
15 | 65.64985 | 93.83373 | 44.2516 | 0.210578 | ||
27 | 67.00405 | 97.65296 | 44.96045 | 0.115005 | ||
3 | 6 | 9 | 62.85394 | 53.33333 | 25.39683 | 0.697222 |
10 | 64.75482 | 60 | 34.83871 | 0.455556 | ||
11 | 66.07711 | 87.27273 | 43.63636 | 0.327778 | ||
12 | 65.6757 | 81.25 | 41.6 | 0.315171 | ||
13 | 65.66822 | 76.0181 | 39.96828 | 0.303042 | ||
14 | 65.9953 | 71.42857 | 38.6681 | 0.29142 | ||
15 | 66.61465 | 80 | 37.64706 | 0.280093 | ||
27 | 67.79991 | 95.2381 | 43.31013 | 0.134206 | ||
3 | 7 | 9 | 66.04419 | 62.22222 | 28.28283 | 0.711111 |
10 | 66.74042 | 70 | 37.89474 | 0.469444 | ||
11 | 66.98854 | 84.84848 | 46.28099 | 0.341667 | ||
12 | 66.51685 | 77.77778 | 44.14414 | 0.328968 | ||
13 | 66.51036 | 85.34107 | 42.47021 | 0.41627 | ||
14 | 66.70295 | 79.24528 | 41.07579 | 0.303968 | ||
15 | 67.23916 | 80 | 40 | 0.291667 | ||
27 | 68.71212 | 86.9281 | 39.11621 | 0.167515 | ||
4 | 9 | 13 | 59.49831 | 82.48773 | 39.16084 | 0.376323 |
14 | 59.18462 | 77.6559 | 38.06724 | 0.363664 | ||
15 | 59.39471 | 67.37465 | 32.53158 | 0.408748 | ||
16 | 59.76306 | 81.60601 | 38.02047 | 0.326061 | ||
17 | 60.1428 | 77.51599 | 36.68532 | 0.320008 | ||
18 | 60.21471 | 75.41108 | 35.99499 | 0.311856 | ||
21 | 61.47599 | 82.6686 | 34.77996 | 0.283406 | ||
25 | 61.47872 | 89.83834 | 37.93374 | 0.213251 |
Number of factors | Number of parameters | Number of design points (N) | D-efficiency (%) | G-efficiency (%) | A-efficiency (%) | Average Variance of Prediction (AVP) |
---|---|---|---|---|---|---|
3 | 5 | 9 | 61.32132 | 74.07407 | 48.30918 | 0.323333 |
10 | 61.81643 | 66.77774 | 46.9793 | 0.297374 | ||
11 | 62.87172 | 66.42324 | 46.73369 | 0.272618 | ||
12 | 61.87742 | 72.80956 | 45.73915 | 0.249532 | ||
13 | 61.96404 | 69.21453 | 46.55971 | 0.226197 | ||
14 | 63.18278 | 85.76883 | 47.71272 | 0.208198 | ||
15 | 64.68813 | 80 | 48.9083 | 0.191468 | ||
27 | 65.15931 | 83.36667 | 49.24094 | 0.105458 | ||
3 | 6 | 9 | 58.11824 | 66.66667 | 47.61903 | 0.351111 |
10 | 58.86504 | 59.82963 | 46.20002 | 0.324658 | ||
11 | 60.30197 | 58.83521 | 45.5094 | 0.297414 | ||
12 | 61.88824 | 89.08194 | 47.11375 | 0.270582 | ||
13 | 65.1364 | 85.2071 | 49.01293 | 0.242778 | ||
14 | 63.71614 | 79.12088 | 49.09363 | 0.22378 | ||
15 | 62.64027 | 73.84615 | 49.5941 | 0.205357 | ||
27 | 62.43969 | 68.53836 | 49.21173 | 0.113965 | ||
3 | 7 | 9 | 57.69692 | 51.59114 | 43.3002 | 0.429518 |
10 | 53.80632 | 53.15039 | 41.48247 | 0.378536 | ||
11 | 58.18175 | 54.23887 | 43.80323 | 0.328886 | ||
12 | 59.70504 | 84.75852 | 46.83452 | 0.292052 | ||
13 | 64.6098 | 80.76923 | 50.48077 | 0.256667 | ||
14 | 62.73272 | 77.35849 | 50.10183 | 0.237669 | ||
15 | 61.21732 | 70 | 50.09585 | 0.219246 | ||
27 | 64.47407 | 77.77778 | 50.9151 | 0.121501 | ||
4 | 9 | 13 | 57.21456 | 77.00078 | 41.93254 | 0.350826 |
14 | 56.7514 | 77.71704 | 42.55255 | 0.322023 | ||
15 | 56.19102 | 74.49687 | 43.4051 | 0.295676 | ||
16 | 56.00956 | 73.65331 | 43.93409 | 0.273887 | ||
17 | 55.95376 | 70.8992 | 44.33641 | 0.25519 | ||
18 | 56.33369 | 68.83533 | 43.70558 | 0.244087 | ||
21 | 58.53976 | 72.40759 | 43.80603 | 0.208551 | ||
25 | 57.08659 | 66.10358 | 43.44466 | 0.175454 |
AVP | Average Variance of Prediction |
DOE | Design of Experiment |
CGD | Computer-generated Designs |
JMP | John’s Macintosh Project |
SPV | Scaled Prediction Variance |
[1] | Akinlana, D. M. (2022). New Developments in Statistical Optimal Designs for Physical and Computer Experiments. University of South Florida. |
[2] | Gaifman, H. (2004). Non-standard models in a broader perspective. In Nonstandard Models of Arithmetic and Set Theory (pp. 1–22). American Mathematical Society. |
[3] | Goos, P., & Jones, B. (2011). Optimal Designs of Experiments: A Case Study Approach, 1st Edition, Wiley, New York. ISBN: 978-0-470-74461-1 |
[4] | Goos, P., Jones, B., & Syafitri, U. (2016). I-optimal design of mixture experiments. Journal of the American Statistical Association, 111(514), 899–911. |
[5] | Iwundu M. P. & Otaru O. A. P. (2019). Construction of Hat-Matrix Composite Designs for Second-Order Models. American Journal of Computational and Applied Mathematics. |
[6] | Iwundu, M. (2017). Missing observations: The loss in relative A-, D- and G-efficiency. International Journal of Advanced Mathematical Sciences, 5(2), 43. |
[7] | Iwundu, M. P. (2018). Construction of Modified Central Composite Designs for Non-standard Models. Canadian Center of Science and Education. |
[8] | Iwundu, Mary Paschal, & Cosmos, J. (2022). The efficiency of seven-variable box-Behnken experimental design with varying center runs on full and reduced model types. Journal of Mathematics and Statistics, 18(1), 196–207. |
[9] | Johnson, R. T., Montgomery, D. C., & Jones, B. A. (2011). An expository paper on optimal design. Quality Engineering, 23(3), 287–301. |
[10] | Jones, B., & Goos, P. (2012). I-optimal versus D-optimal split-plot response surface designs. Journal of Quality Technology, 44(2), 85–101. |
[11] | Kiefer, J., & Wolfowitz, J. (1959). Optimum Designs in Regression Problems. The Annals of Mathematical Statistics, 30(2), 271–294. |
[12] | Kiefer, J., & Wolfowitz, J. (1960). The equivalence of two extremum problems. Canadian Journal of Mathematics. Journal Canadien de Mathematiques, 12(0), 363–366. |
[13] | Montgomery, D. C. (2001). Design and Analysis of Experiment 5th ed. John Wiley & Sons Inc. |
[14] | Myers R. H, M. D. C. &. A.-C. C. M. (2009). Response surface methodology: Process and product using designed experiments (3rd ed.). Wiley-Blackwell. |
[15] | Ossia C. V. and Big-Alabo, A. (2022). Performance Evaluation of Apricot Kernel Oil-Based Cutting-Fluid Using L27 Orthogonal Arrays Design. Journal of the Egyptian Society of Tribology. |
[16] | Rady E. A., M. M. E. Abd El-Monsef, and M. M. Seyam. (2009). Relationships among Several Optimality Criteria. Cairo University. |
[17] | Smucker, B., Krzywinski, M., & Altman, N. (2018). Optimal experimental design. Nature Methods, 15(8), 559–560. |
[18] | Walsh, S. J., Lu, L., & Anderson-Cook, C. M. (2024). I -optimal or G -optimal: Do we have to choose? Quality Engineering, 36(2), 227–248. |
[19] | Warren F. Kuhfeld, SAS Institute, Inc. (1997). Efficient Experimental Designs Using Computerized Searches. Sawtooth Software, Inc. |
[20] | Wong, W. K. (1994). Comparing robust properties of A, D, E, and G-optimal designs. Computational Statistics & Data Analysis, 18(4), 441–448. |
[21] | Yeh Mei-Fen, Anthony Cece, Mark Presser. (2010). Custom Designs Using JMP® Design of Experiments and SAS® PROC OPTEX. Unilever, Trumbull, CT. |
[22] | Zhou, Y. D., & Xu, H. (2017). Composite designs based on orthogonal arrays and definitive screening designs. Journal of the American Statistical Association, 112(520), 1675–1683. |
APA Style
Paschal, I. M., Fortune, I. C. (2024). Performance Evaluation of Custom A-, D-, and I-Optimal Designs for Non-Standard Second-Order Models. American Journal of Theoretical and Applied Statistics, 13(5), 92-114. https://doi.org/10.11648/j.ajtas.20241305.11
ACS Style
Paschal, I. M.; Fortune, I. C. Performance Evaluation of Custom A-, D-, and I-Optimal Designs for Non-Standard Second-Order Models. Am. J. Theor. Appl. Stat. 2024, 13(5), 92-114. doi: 10.11648/j.ajtas.20241305.11
AMA Style
Paschal IM, Fortune IC. Performance Evaluation of Custom A-, D-, and I-Optimal Designs for Non-Standard Second-Order Models. Am J Theor Appl Stat. 2024;13(5):92-114. doi: 10.11648/j.ajtas.20241305.11
@article{10.11648/j.ajtas.20241305.11, author = {Iwundu Mary Paschal and Israel Chinomso Fortune}, title = {Performance Evaluation of Custom A-, D-, and I-Optimal Designs for Non-Standard Second-Order Models }, journal = {American Journal of Theoretical and Applied Statistics}, volume = {13}, number = {5}, pages = {92-114}, doi = {10.11648/j.ajtas.20241305.11}, url = {https://doi.org/10.11648/j.ajtas.20241305.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajtas.20241305.11}, abstract = {The performances of Custom A-, D-, and I-optimal designs on non-standard second-order models are examined using the alphabetic A-, D-, and G-optimality efficiencies, as well as the Average Variance of Prediction. Designs of varying sizes are constructed with the help of JMP Pro 14 software and are customized for specified non-standard models, optimality criteria, prespecified experimental runs, and a specified range of input variables. The results reveal that Custom-A optimal designs perform generally better in terms of G-efficiency. They show high superiority to A-efficiency as the worst G-efficiency value of the created Custom-A optimal designs exceeds the best A-efficiency value of the designs, and also does well in terms of D-efficiency. Custom-D optimal designs perform generally best in terms of G-efficiency, as the worst G-efficiency value exceeds all A- and D-efficiency values. Custom-I optimal designs perform generally best in terms of G-efficiency as the worst G-efficiency value is better than the best A-efficiency value and performs generally better than the corresponding D-efficiency values. For the Average Variance of Prediction, Custom A- and I-optimal designs perform competitively well, with relatively low Average Variances of Prediction. On the contrary, the Average Variance of Prediction is generally larger for Custom-D optimal designs. Hence when seeking designs that minimize the variance of the predicted response, it suffices to construct Custom A-, D-, or I-optimal designs, with a preference for Custom-D optimal designs. }, year = {2024} }
TY - JOUR T1 - Performance Evaluation of Custom A-, D-, and I-Optimal Designs for Non-Standard Second-Order Models AU - Iwundu Mary Paschal AU - Israel Chinomso Fortune Y1 - 2024/09/26 PY - 2024 N1 - https://doi.org/10.11648/j.ajtas.20241305.11 DO - 10.11648/j.ajtas.20241305.11 T2 - American Journal of Theoretical and Applied Statistics JF - American Journal of Theoretical and Applied Statistics JO - American Journal of Theoretical and Applied Statistics SP - 92 EP - 114 PB - Science Publishing Group SN - 2326-9006 UR - https://doi.org/10.11648/j.ajtas.20241305.11 AB - The performances of Custom A-, D-, and I-optimal designs on non-standard second-order models are examined using the alphabetic A-, D-, and G-optimality efficiencies, as well as the Average Variance of Prediction. Designs of varying sizes are constructed with the help of JMP Pro 14 software and are customized for specified non-standard models, optimality criteria, prespecified experimental runs, and a specified range of input variables. The results reveal that Custom-A optimal designs perform generally better in terms of G-efficiency. They show high superiority to A-efficiency as the worst G-efficiency value of the created Custom-A optimal designs exceeds the best A-efficiency value of the designs, and also does well in terms of D-efficiency. Custom-D optimal designs perform generally best in terms of G-efficiency, as the worst G-efficiency value exceeds all A- and D-efficiency values. Custom-I optimal designs perform generally best in terms of G-efficiency as the worst G-efficiency value is better than the best A-efficiency value and performs generally better than the corresponding D-efficiency values. For the Average Variance of Prediction, Custom A- and I-optimal designs perform competitively well, with relatively low Average Variances of Prediction. On the contrary, the Average Variance of Prediction is generally larger for Custom-D optimal designs. Hence when seeking designs that minimize the variance of the predicted response, it suffices to construct Custom A-, D-, or I-optimal designs, with a preference for Custom-D optimal designs. VL - 13 IS - 5 ER -