| Peer-Reviewed

Nitrogen Fixation Using Symbiotic and Non-Symbiotic Microbes: A Review Article

Received: 12 August 2021    Accepted: 26 November 2021    Published: 7 December 2021
Views:       Downloads:
Abstract

Nitrogen (N) is one of the key drivers of global agricultural production and needs 150-200 million tons each year by plants in agricultural systems to produce the world’s food, animal feed and industrial products. Hence, to minimize this problem industrially producing nitrogen fertilizer is necessary. However, this industrially produced nitrogen fertilizer affect the world ecosystem through different mechanisms and effective exploitation and utilization of biologically fixed nitrogen in agricultural systems is necessary. This naturally fixed nitrogen minimizes the rate of cost of crop production, urea volatilization and is the sustainable soil fertility maintenance. Despite the importance of biological nitrogen fixation is sustainable and environmentally friend approach, some researches were done on legume crops through exploring variety specific rhizobia species for legume crops and shortage of information on free living nitrogen fixer of bacteria species for cereal crops which will be the future concerned research. This paper review discusses biological nitrogen fixation mechanism symbiotically and non-symbiotically either through free living bacteria or associative with host plant. It also focused on types of bacteria in which fix atmospheric nitrogen in cereal crops and factors affecting biological nitrogen fixation in lesser amount.

Published in Biochemistry and Molecular Biology (Volume 6, Issue 4)
DOI 10.11648/j.bmb.20210604.12
Page(s) 92-98
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Bacteroid, Legume, Nifgene, Nodgene Nodule, Nitrogenase, Rhizobia

References
[1] Baldani, V. L. D., Alvarez, M. D. B., Baldani, J. I., & Döbereiner, J. (1986). Establishment of inoculatedAzospirillum spp. in the rhizosphere and in roots of field grown wheat and sorghum. Plant and Soil, 90 (1-3), 35-46.
[2] Bashan, Y., & Levanony, H. (1990). Current status of Azospirillum inoculation technology: Azospirillum as a challenge for agriculture. Canadian Journal of Microbiology, 36 (9), 591-608.
[3] Bashan, Y. (1998). Azospirillum plant growth-promoting strains are nonpathogenic on tomato, pepper, cotton, and wheat. Canadian Journal of Microbiology, 44 (2), 168-174.
[4] Bashir, M. T., Ali, S. A. L. M. I. A. T. O. N., Ghauri, M. O. I. N. U. D. D. I. N., Adris, A. Z. N. I., & Harun, R. A. Z. I. F. (2013). Impact of excessive nitrogen fertilizers on the environment and associated mitigation strategies. Asian Journal of Microbiology, Biotechnology and Environmental Sciences, 15 (2), 213-221.
[5] Belnap, J. (2001). Factors influencing nitrogen fixation and nitrogen release in biological soil crusts. In Biological soil crusts: structure, function, and management (pp. 241-261). Springer, Berlin, Heidelberg.
[6] Bonaldi, K., Gherbi, H., Franche, C., Bastien, G., Fardoux, J., Barker, D.,... & Cartieaux, F. (2010). The Nod factor–independent symbiotic signaling pathway: development of Agrobacterium rhizogenes–mediated transformation for the Legume Aeschynomene indica. Molecular plant-microbe interactions, 23 (12), 1537-1544.
[7] Buhian, W. P., & Bensmihen, S. (2018). Mini-review: nod factor regulation of phytohormone signaling and homeostasis during rhizobia-legume symbiosis. Frontiers in plant science, 9, 1247.
[8] Bürgmann, H., Widmer, F., Von Sigler, W., & Zeyer, J. (2004). New molecular screening tools for analysis of free-living diazotrophs in soil. Applied and environmental microbiology, 70 (1), 240-247.
[9] Callaham, D. A., & Torrey, J. G. (1981). The structural basis for infection of root hairs of Trifolium repens by Rhizobium. Canadian Journal of Botany, 59 (9), 1647-1664.
[10] Carnahan, J. E., Mortenson, L. E., Mower, H. F., & Castle, J. E. (1960). Nitrogen fixation in cell-free extracts of Clostridium pasteurianum. Biochimica et biophysica acta, 44, 520-535.
[11] Cavalcante, V. A., & Dobereiner, J. (1988). A new acid-tolerant nitrogen-fixing bacterium associated with sugarcane. Plant and soil, 108 (1), 23-31.
[12] Chavada Nikul and Girish K. Goswai, (2020). Biofertilizer: sustainable tools for modern agriculture practise. World Journal of Pharmaceutical Research. 9 (1) 1957-1967.
[13] Cleveland, C. C., Townsend, A. R., Schimel, D. S., Fisher, H., Howarth, R. W., Hedin, L. O.,... & Wasson, M. F. (1999). Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Global biogeochemical cycles, 13 (2), 623-645.
[14] Cojho, E. H., Reis, V. M., Schenberg, A. C. G., & Döbereiner, J. (1993). Interactions of Acetobacter diazotrophicus with an amylolytic yeast in nitrogen-free batch culture. FEMS Microbiology Letters, 106 (3), 341-346.
[15] Crohn, D. (2004, December). Nitrogen mineralization and its importance in organic waste recycling. In Proceedings, National Alfalfa Symposium (pp. 13-5).
[16] Curatti, L., & Rubio, L. M. (2014). Challenges to develop nitrogen-fixing cereals by direct nif-gene transfer. Plant Science, 225, 130-137.
[17] Dommergues, Y., Balandreau, J., & Rinaudo, G. (1973). Non-symbiotic nitrogen fixation in the rhizospheres of rice, maize and different tropical grasses. Soil Biology and Biochemistry, 5 (1), 83-89.
[18] Dennis, P. G., Miller, A. J., & Hirsch, P. R. (2010). Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities?. FEMS microbiology ecology, 72 (3), 313-327.
[19] Egorov, V. I. (2007). The nitrogen regime and biological fixation of nitrogen in moss communities (the Khibiny Mountains). Eurasian soil science, 40 (4), 463-467.
[20] Fallik, E., Sarig, S., & Okon, Y. (1994). Morphology and physiology of plant roots associated with Azospirillum. Azospirillum/plant associations, 77-85.
[21] Fisher, R. F., & Long, S. R. (1992). Rhizobium–plant signal exchange. Nature, 357 (6380), 655-660.
[22] Franche, C., Lindström, K., & Elmerich, C. (2009). Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant and soil, 321 (1-2), 35-59.
[23] Geisseler, D., Horwath, W. R., Joergensen, R. G., & Ludwig, B. (2010). Pathways of nitrogen utilization by soil microorganisms–a review. Soil Biology and Biochemistry, 42 (12), 2058-2067.
[24] Golden, J. W., Robinson, S. J., & Haselkorn, R. (1985). Rearrangement of nitrogen fixation genes during heterocyst differentiation in the cyanobacterium Anabaena. Nature, 314 (6010), 419-423.
[25] González-López, J., Rodelas, B., Pozo, C., Salmerón-López, V., Martínez-Toledo, M. V., & Salmerón, V. (2005). Liberation of amino acids by heterotrophic nitrogen fixing bacteria. Amino acids, 28 (4), 363-367.
[26] Hachiya, T., & Sakakibara, H. (2017). Interactions between nitrate and ammonium in their uptake, allocation, assimilation, and signaling in plants. Journal of Experimental Botany, 68 (10), 2501-2512.
[27] Herridge, D. F., Peoples, M. B., & Boddey, R. M. (2008). Global inputs of biological nitrogen fixation in agricultural systems. Plant and soil, 311 (1-2), 1-18.
[28] Jensen, E. S., Peoples, M. B., Boddey, R. M., Gresshoff, P. M., Hauggaard-Nielsen, H., Alves, B. J., & Morrison, M. J. (2012). Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries. A review. Agronomy for sustainable development, 32 (2), 329-364.
[29] Jimenez-Salgado, T., Fuentes-Ramirez, L. E., Tapia-Hernandez, A., Mascarua-Esparza, M. A., Martinez-Romero, E., & Caballero-Mellado, J. (1997). Coffea arabica L., a new host plant for Acetobacter diazotrophicus, and isolation of other nitrogen-fixing acetobacteria. Applied and Environmental Microbiology, 63 (9), 3676-3683.
[30] Kanungo, P. K., Panda, D., Adhya, T. K., Ramakrishnan, B., & Rao, V. R. (1997). Nitrogenase Activity and Nitrogen-Fixing Bacteria Associated with Rhizosphere of Rice Cultivars with Varying N Absorption Efficiency. Journal of the Science of Food and Agriculture, 73 (4), 485-488.
[31] Kennedy, I. R., Choudhury, A. T. M. A., & Kecskés, M. L. (2004). Non-symbiotic bacterial diazotrophs in crop-farming systems: can their potential for plant growth promotion be better exploited?. Soil Biology and Biochemistry, 36 (8), 1229-1244.
[32] Kennedy, I. R., & Tchan, Y. T. (1992). Biological nitrogen fixation in non-leguminous field crops: Recent advances. Plant and Soil, 141 (1-2), 93-118.
[33] Khammas, K. M., Ageron, E., Grimont, P. A. D., & Kaiser, P. (1989). Azospirillum irakense sp. nov., a nitrogen-fixing bacterium associated with rice roots and. Research in microbiology, 140 (8), 679-693.
[34] Knowles, R. (1983). Free-living dinitrogen-fixing bacteria. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 9, 1071-1092.
[35] Kumarı, S., & Sınha, R. P. (2011). Symbiotic and asymbiotic N2 fixation. Advances in Life Sciences, 133-148.
[36] Laranjo, M., Alexandre, A., & Oliveira, S. (2014). Legume growth-promoting rhizobia: an overview on the Mesorhizobium genus. Microbiological research, 169 (1), 2-17.
[37] L’taief, B., Sifi, B., Zaman-Allah, M., Drevon, J. J., & Lachaâl, M. (2007). Effect of salinity on root-nodule conductance to the oxygen diffusion in the Cicer arietinum–Mesorhizobium ciceri symbiosis. Journal of plant physiology, 164 (8), 1028-1036.
[38] Long, S. R. (2001). Genes and signals in the Rhizobium-legume symbiosis. Plant physiology, 125 (1), 69-72.
[39] Madhaiyan, M., Saravanan, V. S., Jovi, D. B. S. S., Lee, H., Thenmozhi, R., Hari, K., & Sa, T. (2004). Occurrence of Gluconacetobacter diazotrophicus in tropical and subtropical plants of Western Ghats, India. Microbiological Research, 159 (3), 233-243.
[40] Magalhaes, F. M., Baldani, J. I., Souto, S. M., Kuykendall, J. R., & Dobereiner, J. (1983). New acid-tolerant Azospirillum species. Anais-Academia Brasileira de Ciencias.
[41] Mahdhi, M., De Lajudie, P., & Mars, M. (2008). Phylogenetic and symbiotic characterization of rhizobial bacteria nodulating Argyrolobium uniflorum in Tunisian arid soils. Canadian journal of microbiology, 54 (3), 209-217.
[42] Martínez-Romero, E. (2009). Coevolution in Rhizobium-legume symbiosis?. DNA and cell biology, 28 (8), 361-370.
[43] Meena, R. S., Das, A., Yadav, G. S., & Lal, R. (Eds.). (2018). Legumes for Soil Health and Sustainable Management. Springer.
[44] Meenakshisundaram, M., & Santhaguru, K. (2010). Isolation and nitrogen fixing efficiency of a novel endophytic diazotroph Gluconacetobacter diazotrophicus associated with Saccharum officinarum from Southern districts of Tamilnadu. International Journal of Biological and Medical Research, 1, 298-300.
[45] McAdam, E. L., Reid, J. B., & Foo, E. (2018). Gibberellins promote nodule organogenesis but inhibit the infection stages of nodulation. Journal of experimental botany, 69 (8), 2117-2130.
[46] Mohammadi, K., Sohrabi, Y., Heidari, G., Khalesro, S., & Majidi, M. (2012). Effective factors on biological nitrogen fixation. African Journal of Agricultural Research, 7 (12), 1782-1788.
[47] Mousavi, S. A., Willems, A., Nesme, X., de Lajudie, P., & Lindström, K. (2015). Revised phylogeny of Rhizobiaceae: proposal of the delineation of Pararhizobium gen. nov., and 13 new species combinations. Systematic and applied microbiology, 38 (2), 84-90.
[48] Mus, F., Crook, M. B., Garcia, K., Costas, A. G., Geddes, B. A., Kouri, E. D.,... & Udvardi, M. K. (2016). Symbiotic nitrogen fixation and the challenges to its extension to nonlegumes. Applied and environmental microbiology, 82 (13), 3698-3710.
[49] Muthukumarasamy, R., Revathi, G., Seshadri, S., & Lakshminarasimhan, C. (2002). Gluconacetobacter diazotrophicus (syn. Acetobacter diazotrophicus), a promising diazotrophic endophyte in tropics. Current Science, 137-145.
[50] Okon, Y., & Kapulnik, Y. (1986). Development and function ofAzospirillum-inoculated roots. Plant and soil, 90 (1-3), 3-16.
[51] Okon, Y., & Itzigsohn, R. (1995). The development of Azospirillum as a commercial inoculant for improving crop yields. Biotechnology advances, 13 (3), 415-424.
[52] Oldroyd, G. E., & Dixon, R. (2014). Biotechnological solutions to the nitrogen problem. Current opinion in biotechnology, 26, 19-24.
[53] Oldroyd, G. E., Murray, J. D., Poole, P. S., & Downie, J. A. (2011). The rules of engagement in the legume-rhizobial symbiosis. Annual review of genetics, 45, 119-144.
[54] Patriquin, D. G., Döbereiner, J., & Jain, D. K. (1983). Sites and processes of association between diazotrophs and grasses. Canadian Journal of Microbiology, 29 (8), 900-915.
[55] Paula, M. D., Reis, V. M., & Döbereiner, J. (1991). Interactions of Glomus clarum with Acetobacter diazotrophicus in infection of sweet potato (Ipomoea batatas), sugarcane (Saccharum spp.), and sweet sorghum (Sorghum vulgare). Biology and Fertility of Soils, 11 (2), 111-115.
[56] Quesada, A., Leganés, F., & Fernández-Valiente, E. (1997). Environmental factors controlling N 2 fixation in Mediterranean rice fields. Microbial ecology, 34 (1), 39-48.
[57] Saubidet, M. I., Fatta, N., & Barneix, A. J. (2002). The effect of inoculation with Azospirillum brasilense on growth and nitrogen utilization by wheat plants. Plant and soil, 245 (2), 215-222.
[58] Shankariah, C., & Hunsigi, G. (2001, September). Field responses of sugarcane to associative N2 fixers and P solubilisers. In International society of sugar cane technologists congress (Vol. 24, pp. 40-45).
[59] Simon, T. (2003). Utilization of the biological nitrogen fixation for soil evaluation. Plant, Soil and Environment-UZPI (Czech Republic).
[60] Smil, V. (1999). Nitrogen in crop production: An account of global flows. Global biogeochemical cycles, 13 (2), 647-662.
[61] Sprent, J. I., & Sprent, P. (1990). Nitrogen fixing organisms: Pure and applied aspects. Nitrogen fixing organisms: pure and applied aspects.
[62] Rogel, M. A., Ormeno-Orrillo, E., & Romero, E. M. (2011). Symbiovars in rhizobia reflect bacterial adaptation to legumes. Systematic and Applied Microbiology, 34 (2), 96-104.
[63] Roper, M. M., & Ladha, J. K. (1995). Biological N 2 fixation by heterotrophic and phototrophic bacteria in association with straw. In Management of Biological Nitrogen Fixation for the Development of More Productive and Sustainable Agricultural Systems (pp. 211-224). Springer, Dordrecht.
[64] Rosenberg, C., Boistard, P., Dénarié, J., & Casse-Delbart, F. (1981). Genes controlling early and late functions in symbiosis are located on a megaplasmid in Rhizobium meliloti. Molecular and General Genetics MGG, 184 (2), 326-333.
[65] Rubio, L. M., & Ludden, P. W. (2008). Biosynthesis of the iron-molybdenum cofactor of nitrogenase. Annual review of microbiology, 62.
[66] Tapia-Hernández, A., Bustillos-Cristales, M. R., Jiménez-Salgado, T., Caballero-Mellado, J., & Fuentes-Ramirez, L. E. (2000). Natural endophytic occurrence of Acetobacter diazotrophicus in pineapple plants. Microbial Ecology, 39 (1), 49-55.
[67] Tarrand, J. J., Krieg, N. R., & Döbereiner, J. (1978). A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Canadian journal of microbiology, 24 (8), 967-980.
[68] Tian, G., Pauls, P., Dong, Z., Reid, L. M., & Tian, L. (2009). Colonization of the nitrogen-fixing bacterium Gluconacetobacter diazotrophicus in a large number of Canadian corn plants. Canadian Journal of Plant Science, 89 (6), 1009-1016.
[69] Vintila, S., & El-Shehawy, R. (2007). Ammonium ions inhibit nitrogen fixation but do not affect heterocyst frequency in the bloom-forming cyanobacterium Nodularia spumigena strain AV1. Microbiology, 153 (11), 3704-3712.
[70] Wagner, S. C. (2011). Biological Nitrogen Fixation. Nature Education Knowledge. 3, 15.
[71] Vega-Palas, M. A., Flores, E., & Herrero, A. (1992). NtcA, a global nitrogen regulator from the cyanobacterium Synechococcus that belongs to the Crp family of bacterial regulators. Molecular microbiology, 6 (13), 1853-1859.
[72] Vlassak, K. M., Vanderleyden, J., & Graham, P. H. (1997). Factors influencing nodule occupancy by inoculant rhizobia. Critical Reviews in Plant Sciences, 16 (2), 163-229.
[73] Yan, Y., Ping, S., Peng, J., Han, Y., Li, L., Yang, J., & Li, D. (2010). Global transcriptional analysis of nitrogen fixation and ammonium repression in root-associated Pseudomonas stutzeri A1501. BMC genomics, 11 (1), 11.
Cite This Article
  • APA Style

    Mamo Bekele, Getachew Yilma. (2021). Nitrogen Fixation Using Symbiotic and Non-Symbiotic Microbes: A Review Article. Biochemistry and Molecular Biology, 6(4), 92-98. https://doi.org/10.11648/j.bmb.20210604.12

    Copy | Download

    ACS Style

    Mamo Bekele; Getachew Yilma. Nitrogen Fixation Using Symbiotic and Non-Symbiotic Microbes: A Review Article. Biochem. Mol. Biol. 2021, 6(4), 92-98. doi: 10.11648/j.bmb.20210604.12

    Copy | Download

    AMA Style

    Mamo Bekele, Getachew Yilma. Nitrogen Fixation Using Symbiotic and Non-Symbiotic Microbes: A Review Article. Biochem Mol Biol. 2021;6(4):92-98. doi: 10.11648/j.bmb.20210604.12

    Copy | Download

  • @article{10.11648/j.bmb.20210604.12,
      author = {Mamo Bekele and Getachew Yilma},
      title = {Nitrogen Fixation Using Symbiotic and Non-Symbiotic Microbes: A Review Article},
      journal = {Biochemistry and Molecular Biology},
      volume = {6},
      number = {4},
      pages = {92-98},
      doi = {10.11648/j.bmb.20210604.12},
      url = {https://doi.org/10.11648/j.bmb.20210604.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.bmb.20210604.12},
      abstract = {Nitrogen (N) is one of the key drivers of global agricultural production and needs 150-200 million tons each year by plants in agricultural systems to produce the world’s food, animal feed and industrial products. Hence, to minimize this problem industrially producing nitrogen fertilizer is necessary. However, this industrially produced nitrogen fertilizer affect the world ecosystem through different mechanisms and effective exploitation and utilization of biologically fixed nitrogen in agricultural systems is necessary. This naturally fixed nitrogen minimizes the rate of cost of crop production, urea volatilization and is the sustainable soil fertility maintenance. Despite the importance of biological nitrogen fixation is sustainable and environmentally friend approach, some researches were done on legume crops through exploring variety specific rhizobia species for legume crops and shortage of information on free living nitrogen fixer of bacteria species for cereal crops which will be the future concerned research. This paper review discusses biological nitrogen fixation mechanism symbiotically and non-symbiotically either through free living bacteria or associative with host plant. It also focused on types of bacteria in which fix atmospheric nitrogen in cereal crops and factors affecting biological nitrogen fixation in lesser amount.},
     year = {2021}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Nitrogen Fixation Using Symbiotic and Non-Symbiotic Microbes: A Review Article
    AU  - Mamo Bekele
    AU  - Getachew Yilma
    Y1  - 2021/12/07
    PY  - 2021
    N1  - https://doi.org/10.11648/j.bmb.20210604.12
    DO  - 10.11648/j.bmb.20210604.12
    T2  - Biochemistry and Molecular Biology
    JF  - Biochemistry and Molecular Biology
    JO  - Biochemistry and Molecular Biology
    SP  - 92
    EP  - 98
    PB  - Science Publishing Group
    SN  - 2575-5048
    UR  - https://doi.org/10.11648/j.bmb.20210604.12
    AB  - Nitrogen (N) is one of the key drivers of global agricultural production and needs 150-200 million tons each year by plants in agricultural systems to produce the world’s food, animal feed and industrial products. Hence, to minimize this problem industrially producing nitrogen fertilizer is necessary. However, this industrially produced nitrogen fertilizer affect the world ecosystem through different mechanisms and effective exploitation and utilization of biologically fixed nitrogen in agricultural systems is necessary. This naturally fixed nitrogen minimizes the rate of cost of crop production, urea volatilization and is the sustainable soil fertility maintenance. Despite the importance of biological nitrogen fixation is sustainable and environmentally friend approach, some researches were done on legume crops through exploring variety specific rhizobia species for legume crops and shortage of information on free living nitrogen fixer of bacteria species for cereal crops which will be the future concerned research. This paper review discusses biological nitrogen fixation mechanism symbiotically and non-symbiotically either through free living bacteria or associative with host plant. It also focused on types of bacteria in which fix atmospheric nitrogen in cereal crops and factors affecting biological nitrogen fixation in lesser amount.
    VL  - 6
    IS  - 4
    ER  - 

    Copy | Download

Author Information
  • Ethiopian Institute of Agricultural Research, Addis Ababa, Ethiopia

  • Fogera National Rice Research and Training Center, Fogera, Ethiopia

  • Sections