| Peer-Reviewed

Radiolabeling with Technetium 99m for the Diagnosis of Coronary Heart Disease in Senegal

Received: 17 April 2023    Accepted: 9 May 2023    Published: 24 May 2023
Views:       Downloads:
Abstract

Coronary heart disease is the leading cause of death in industrialized countries. In Africa, its prevalence is increasing in line with the westernization of lifestyles, the improvement of socio-economic conditions and the increase in life expectancy. Therefore, myocardial perfusion scintigraphy presents itself as an effective imaging technique allowing improved prevention, diagnosis and therapeutic management and monitoring of patients at risk. Our present work has exclusively focused on the early diagnosis of patients at risk in the nuclear medicine department of the Grand Yoff General Hospital (HOGIP). Our work consisted of administering a radiopharmaceutical to a patient and monitoring its fate in the body by external detection of gamma radiation using a Mediso Nucline TM gamma camera. We used vectors like sestamibi and tetrofosmin. These vectors have the particularity of having an affinity and a tropism for the myocardial tissue. These two vectors were labeled with technetium 99m (radiotracer). Indeed, these radioactive tracers attach themselves to the organ to be studied from where they emit gamma radiation captured by a gamma camera which detects the signal from this organ and reconstructs a computerized static or dynamic image. This made it possible to make a diagnosis of ischemia or myocardial necrosis in 57% of cases in women and 82.5% of cases in men in a sample of 45 patients. Thanks to the qualitative visual interpretation of the distribution of the tracer, a diagnostic aid was provided by the semi-quantitative analysis provided by the study of the polar maps (bull's eyes). This myocardial perfusion scintigraphy can be a valuable diagnostic aid, especially in our countries where income is limited.

Published in European Journal of Biophysics (Volume 11, Issue 1)
DOI 10.11648/j.ejb.20231101.12
Page(s) 17-24
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Coronary Heart Disease, Diagnosis, Radiolabeling, Technetium 99m

References
[1] C. Maroun, A. Hajj, H. Sacre, et L. Khabbaz, «Individualisation du traitement des patients avec maladie cardiovasculaire», Kinésithérapie, la Revue, vol. 18, n° 195, p. 37-45, mars 2018, doi: 10.1016/j.kine.2017.11.012.
[2] R. Valéro, «Triglycérides et risque cardiovasculaire», Médecine des Maladies Métaboliques, vol. 13, n° 2, p. 123-128, mars 2019, doi: 10.1016/S1957-2557(19)30041-0.
[3] W. Angehrn, «La cardiopathie ischémique chronique», Forum Médical Suisse, vol. 1, n° 48, p. 1187-1191, nov. 2001, doi: 10.4414/fms.2001.04349.
[4] M. C. Mboup, M. Diao, K. Dia, et P. D. Fall, «Les syndromes coronaires aigus à Dakar: aspects cliniques thérapeutiques et évolutifs», Pan Afr Med J, vol. 19, oct. 2014, doi: 10.11604/pamj.2014.19.126.3155.
[5] E. D. Grech et D. R. Ramsdale, « Acute coronary syndrome: unstable angina and non-ST segment elevation myocardial infarction », BMJ, vol. 326, n° 7401, p. 1259-1261, juin 2003, doi: 10.1136/bmj.326.7401.1259.
[6] M. Lévy, «Scintigraphie myocardique et pronostic dans la maladie coronaire», vol. 2, p. 12, 2006.
[7] N. Braik, P. Ecollan, et G. Montalescot, «Prise en charge de l’infarctus du myocarde, nouveautés des Recommandation ESC 2017», Journal Européen des Urgences et de Réanimation, vol. 30, n° 1, p. 20-27, juin 2018, doi: 10.1016/j.jeurea.2018.05.004.
[8] S. Ali, K. Limam, W. Elajmi, S. Mahjoubi, et H. Hatem, «Apport de la scintigraphie myocardique de perfusion dans la détection de l’ischémie silencieuse», Annales d’Endocrinologie, vol. 78, n° 4, p. 432-433, sept. 2017, doi: 10.1016/j.ando.2017.07.707.
[9] D. K. Glover et R. D. Okada, «Myocardial technetium 99m sestamibi kinetics after reperfusion in a canine model», American Heart Journal, vol. 125, n° 3, p. 657-666, mars 1993, doi: 10.1016/0002-8703(93)90154-2.
[10] J. C. Hung, T. J. Herold, et R. J. Gibbons, «Optimal conditions of 99mTc eluate for the radiolabeling of 99mTc-sestamibi», Nuclear Medicine and Biology, vol. 23, n° 5, p. 599-603, juill. 1996, doi: 10.1016/0969-8051(96)00054-6.
[11] A. Manrique et P. Y. Marie, «Recommendations to realise and interpret the scintigraphy of myocardium perfusion», juin 2003, Consulté le: 31 juillet 2019. [En ligne]. Disponible sur: http://inis.iaea.org/Search/search.aspx?orig_q=RN:39075312
[12] Q. S. Li, T. L. Frank, D. Franceschi, J. H. Wagner, et L. C. Becker, «Technetium-99m methoxyisobutyl isonitrile (RP30) for quantification of myocardial ischemia and reperfusion in dogs.», J Nucl Med, vol. 29, n° 9, p. 1539-1548, sept. 1988.
[13] T. Takeda et al., «Perfusion and mechanical analysis with technetium-99m 2-methoxy-isobutyl-isonitrile in a case of dilated cardiomyopathy», Ann Nucl Med, vol. 6, n° 2, p. 103-110, juin 1992, doi: 10.1007/BF03164651.
[14] D. Kryza et M. Janier, «Radio-UHPLC: A tool for rapidly determining the radiochemical purity of technetium-99m radiopharmaceuticals?», Applied Radiation and Isotopes, vol. 78, p. 72-76, août 2013, doi: 10.1016/j.apradiso.2013.04.005.
[15] A. Cuocolo et al., «Technetium 99m-labeled tetrofosmin myocardial tomography in patients with coronary artery disease: Comparison between adenosine and dynamic exercise stress testing», Journal of Nuclear Cardiology, vol. 3, n° 3, p. 194-203, mai 1996, doi: 10.1016/S1071-3581(96)90033-1.
[16] G. A. Beller, «New directions in myocardial perfusion imaging», Clinical Cardiology, vol. 16, n° 2, p. 86-94, 1993, doi: 10.1002/clc.4960160203.
[17] Société Française de Médecine Nucléaire et Imagerie Moléculaire, «Guide pour la rédaction de protocoles pour la tomoscintigraphie de perfusion myocardique», Médecine Nucléaire, vol. 36, n° 6, p. 336-352, juin 2012, doi: 10.1016/j.mednuc.2012.04.002.
[18] R. Amir, R. Messin, J. Verelst, et A. Lenaers, «Contribution of radionuclide angiocardiography and exercise testing to the detection of left ventricular aneurysm», Nuclear medicine in research and practice, 1986, Consulté le: 1 août 2019. [En ligne]. Disponible sur: http://inis.iaea.org/Search/search.aspx?orig_q=RN:18036872
[19] A. Cribier, J. Berland, F. Prigent, et B. Letac, «Étude angiographique de la fraction d’éjection par tiers de systole chez le coronarien», Arch Mal Coeur, vol. 6, p. 641, 1982.
[20] A. Chiddo, A. Gaglione, D. Quagliara, et P. Rizzon, «Invasive Assessment of Left Ventricular Function in Ischemic Heart Disease», in Assessment of Ventricular Function, Springer, 1985, p. 237-243.
[21] Division de cardiologie, St. Michael’s Hospital, «La scintigraphie myocardique à l’effort ou Mibi à l’effort», p. 6.
[22] T. Nakahara, Y. Iwabuchi, et K. Murakami, «Diagnostic Performance of 3D Bull’s Eye Display of SPECT and Coronary CTA Fusion», JACC: Cardiovascular Imaging, vol. 9, n° 6, p. 703-711, juin 2016, doi: 10.1016/j.jcmg.2015.09.024.
[23] M. D. Cerqueira et al., «Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association», Circulation, vol. 105, n° 4, p. 539-542, janv. 2002, doi: 10.1161/hc0402.102975.
[24] M. É. Aliot, «Intérêt diagnostique et pronostique de l’IRM cardiaque dans la prise en charge des infarctus du myocarde sans élévation persistante du segment ST à coronaires non obstructives.», p. 109, 2012.
[25] T. Delzescaux, «Recalage de séquences d’images pour l’étude de la perfusion myocardique en imagerie par résonance magnétique», thesis, Cergy-Pontoise, 2001. Consulté le: 1 août 2019. [En ligne]. Disponible sur: http://www.theses.fr/2001CERG0124
[26] François HAREL, «Cardiologie nucléaire du 21ième siècle Nouveautés et réalités», p. 139.
Cite This Article
  • APA Style

    Papa Mady Sy, Alphonse Rodrigue Djiboune, Sidy Mouhamed Dieng, Boucar Ndong, El Hadji Amadou Lamine Bathily, et al. (2023). Radiolabeling with Technetium 99m for the Diagnosis of Coronary Heart Disease in Senegal. European Journal of Biophysics, 11(1), 17-24. https://doi.org/10.11648/j.ejb.20231101.12

    Copy | Download

    ACS Style

    Papa Mady Sy; Alphonse Rodrigue Djiboune; Sidy Mouhamed Dieng; Boucar Ndong; El Hadji Amadou Lamine Bathily, et al. Radiolabeling with Technetium 99m for the Diagnosis of Coronary Heart Disease in Senegal. Eur. J. Biophys. 2023, 11(1), 17-24. doi: 10.11648/j.ejb.20231101.12

    Copy | Download

    AMA Style

    Papa Mady Sy, Alphonse Rodrigue Djiboune, Sidy Mouhamed Dieng, Boucar Ndong, El Hadji Amadou Lamine Bathily, et al. Radiolabeling with Technetium 99m for the Diagnosis of Coronary Heart Disease in Senegal. Eur J Biophys. 2023;11(1):17-24. doi: 10.11648/j.ejb.20231101.12

    Copy | Download

  • @article{10.11648/j.ejb.20231101.12,
      author = {Papa Mady Sy and Alphonse Rodrigue Djiboune and Sidy Mouhamed Dieng and Boucar Ndong and El Hadji Amadou Lamine Bathily and Ousseynou Diop and Mamadou Soumboundou and Louis Augustin Diaga Diouf and Gora Mbaye and Mamadou Mbodj and Mounibé Diarra and Sylvie Seck Gassama},
      title = {Radiolabeling with Technetium 99m for the Diagnosis of Coronary Heart Disease in Senegal},
      journal = {European Journal of Biophysics},
      volume = {11},
      number = {1},
      pages = {17-24},
      doi = {10.11648/j.ejb.20231101.12},
      url = {https://doi.org/10.11648/j.ejb.20231101.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ejb.20231101.12},
      abstract = {Coronary heart disease is the leading cause of death in industrialized countries. In Africa, its prevalence is increasing in line with the westernization of lifestyles, the improvement of socio-economic conditions and the increase in life expectancy. Therefore, myocardial perfusion scintigraphy presents itself as an effective imaging technique allowing improved prevention, diagnosis and therapeutic management and monitoring of patients at risk. Our present work has exclusively focused on the early diagnosis of patients at risk in the nuclear medicine department of the Grand Yoff General Hospital (HOGIP). Our work consisted of administering a radiopharmaceutical to a patient and monitoring its fate in the body by external detection of gamma radiation using a Mediso Nucline TM gamma camera. We used vectors like sestamibi and tetrofosmin. These vectors have the particularity of having an affinity and a tropism for the myocardial tissue. These two vectors were labeled with technetium 99m (radiotracer). Indeed, these radioactive tracers attach themselves to the organ to be studied from where they emit gamma radiation captured by a gamma camera which detects the signal from this organ and reconstructs a computerized static or dynamic image. This made it possible to make a diagnosis of ischemia or myocardial necrosis in 57% of cases in women and 82.5% of cases in men in a sample of 45 patients. Thanks to the qualitative visual interpretation of the distribution of the tracer, a diagnostic aid was provided by the semi-quantitative analysis provided by the study of the polar maps (bull's eyes). This myocardial perfusion scintigraphy can be a valuable diagnostic aid, especially in our countries where income is limited.},
     year = {2023}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Radiolabeling with Technetium 99m for the Diagnosis of Coronary Heart Disease in Senegal
    AU  - Papa Mady Sy
    AU  - Alphonse Rodrigue Djiboune
    AU  - Sidy Mouhamed Dieng
    AU  - Boucar Ndong
    AU  - El Hadji Amadou Lamine Bathily
    AU  - Ousseynou Diop
    AU  - Mamadou Soumboundou
    AU  - Louis Augustin Diaga Diouf
    AU  - Gora Mbaye
    AU  - Mamadou Mbodj
    AU  - Mounibé Diarra
    AU  - Sylvie Seck Gassama
    Y1  - 2023/05/24
    PY  - 2023
    N1  - https://doi.org/10.11648/j.ejb.20231101.12
    DO  - 10.11648/j.ejb.20231101.12
    T2  - European Journal of Biophysics
    JF  - European Journal of Biophysics
    JO  - European Journal of Biophysics
    SP  - 17
    EP  - 24
    PB  - Science Publishing Group
    SN  - 2329-1737
    UR  - https://doi.org/10.11648/j.ejb.20231101.12
    AB  - Coronary heart disease is the leading cause of death in industrialized countries. In Africa, its prevalence is increasing in line with the westernization of lifestyles, the improvement of socio-economic conditions and the increase in life expectancy. Therefore, myocardial perfusion scintigraphy presents itself as an effective imaging technique allowing improved prevention, diagnosis and therapeutic management and monitoring of patients at risk. Our present work has exclusively focused on the early diagnosis of patients at risk in the nuclear medicine department of the Grand Yoff General Hospital (HOGIP). Our work consisted of administering a radiopharmaceutical to a patient and monitoring its fate in the body by external detection of gamma radiation using a Mediso Nucline TM gamma camera. We used vectors like sestamibi and tetrofosmin. These vectors have the particularity of having an affinity and a tropism for the myocardial tissue. These two vectors were labeled with technetium 99m (radiotracer). Indeed, these radioactive tracers attach themselves to the organ to be studied from where they emit gamma radiation captured by a gamma camera which detects the signal from this organ and reconstructs a computerized static or dynamic image. This made it possible to make a diagnosis of ischemia or myocardial necrosis in 57% of cases in women and 82.5% of cases in men in a sample of 45 patients. Thanks to the qualitative visual interpretation of the distribution of the tracer, a diagnostic aid was provided by the semi-quantitative analysis provided by the study of the polar maps (bull's eyes). This myocardial perfusion scintigraphy can be a valuable diagnostic aid, especially in our countries where income is limited.
    VL  - 11
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Department of Pharmacy, Laboratory of Physics and Pharmaceutical Biophysics, Faculty of Medicine, Pharmacy and Odontology, Dakar, Senegal

  • Department of Pharmacy, Laboratory of Physics and Pharmaceutical Biophysics, Faculty of Medicine, Pharmacy and Odontology, Dakar, Senegal

  • Department of Pharmacy, Laboratory of Galenic Pharmacy and Biopharmacy, Health Training and Research Unit, Iba Der THIAM University, Thiès, Senegal

  • Department of Medicine, Laboratory of Medical Biophysics and Nuclear Medicine, Faculty of Medicine, Pharmacy and Odontology, Dakar, Senegal

  • Department of Medicine, Laboratory of Medical Biophysics and Nuclear Medicine, Faculty of Medicine, Pharmacy and Odontology, Dakar, Senegal

  • Department of Medicine, Laboratory of Medical Biophysics and Nuclear Medicine, Faculty of Medicine, Pharmacy and Odontology, Dakar, Senegal

  • Department of Pharmacy, Laboratory of Medical Biophysics, Health Training and Research Unit, Iba Der THIAM University, Thiès, Senegal

  • Department of Pharmacy, Laboratory of Physics and Pharmaceutical Biophysics, Faculty of Medicine, Pharmacy and Odontology, Dakar, Senegal

  • Department of Pharmacy, Laboratory of Physics and Pharmaceutical Biophysics, Faculty of Medicine, Pharmacy and Odontology, Dakar, Senegal

  • Department of Medicine, Laboratory of Medical Biophysics and Nuclear Medicine, Faculty of Medicine, Pharmacy and Odontology, Dakar, Senegal

  • Department of Pharmacy, Laboratory of Physics and Pharmaceutical Biophysics, Faculty of Medicine, Pharmacy and Odontology, Dakar, Senegal

  • Department of Medicine, Laboratory of Medical Biophysics and Nuclear Medicine, Faculty of Medicine, Pharmacy and Odontology, Dakar, Senegal

  • Sections