| Peer-Reviewed

Study on Linear Canonical Transformation in a Framework of a Phase Space Representation of Quantum Mechanics

Received: 10 March 2015     Accepted: 31 March 2015     Published: 8 April 2015
Views:       Downloads:
Abstract

We present a study on linear canonical transformation in the framework of a phase space representation of quantum mechanics that we have introduced in our previous work [1]. We begin with a brief recall about the so called phase space representation. We give the definition of linear canonical transformation with the transformation law of coordinate and momentum operators. We establish successively the transformation laws of mean values, dispersions, basis state and wave functions. Then we introduce the concept of isodispersion linear canonical transformation.

Published in International Journal of Applied Mathematics and Theoretical Physics (Volume 1, Issue 1)
DOI 10.11648/j.ijamtp.20150101.11
Page(s) 1-8
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2015. Published by Science Publishing Group

Previous article
Keywords

Linear Canonical Transformation, Phase Space Representation, Quantum Mechanics, Operators, States, Wave Functions, Integral Transform, Dispersions

References
[1] Ravo Tokiniaina Ranaivoson, Raoelina Andriambololona, Rakotoson Hanitriarivo, Roland Raboanary,"Study on a Phase Space Representation ofQuantum Theory, "International Journal of Latest Research in Science and TechnologyVolume 2, Issue 2: pp26-35, 2013
[2] Raoelina Andriambololona “Mécaniquequantique”, Collection LIRA, INSTN Madagascar.pp 25.387-394,1990
[3] Ravo Tokiniaina Ranaivoson, Raoelina Andriambololona, Rakotoson Hanitriarivo. “Time-Frequency analysis and harmonic Gaussian functions”,Pure and Applied MathematicsJournal.Vol. 2, No. 2,2013, pp. 71-78. doi: 10.11648/j.pamj.20130202.14
[4] E.P. Wigner, "On the quantum correction for thermodynamic equilibrium", Phys. Rev 40, 749-759, 1932
[5] H.J. Groenewold, "On the Principles of elementary quantum mechanics",Physica 12, 1946
[6] J.E. Moyal, "Quantum mechanics as a statistical theory", Proceedings of the Cambridge Philosophical Society 45, 99–124, 1949
[7] T.L Curtright ,C.K. Zachos,“ Quantum Mechanics in Phase Space“, arXiv:1104.5269v2 [physics.hist-ph]”, 2011.
[8] D.Dragoman, “Phase space formulation of quantum mechanics, Insight into the measurement problem”, PhysicaScripta 72, 290–295,2005
[9] A. Nassimi, “Quantum Mechanics in Phase Space”, arXiv:0706.0237[quant-ph], 2008
[10] H.-W. Lee, “Theory and application of the quantum phase-space distribution functions”, Phys.Rep 259, Issue 3, 147-211, 1995
[11] A.Kenfack, K.Zyczkowski, “Negativity of the Wigner function as an indicator of non-classicality”,Journal of Optics B: Quantum Semiclass. Opt. 6, 396–404,2004.
[12] D. I. Bondar, R.Cabrera, D. V. Zhdanov, H. A. Rabitz, “Wigner function's negativity reinterpreted: Non-conservation as quantumefficiency indicator”, arXiv:1202.3628v3 ,[quant-ph], 2013.
[13] V. Ashok Narayanan, K.M.M. Prabhu, “The fractional Fourier transform: theory, implementation and error analysis”, Microprocessors and Microsystems 27 (2003) 511–521, Elsevier, 2003.
Cite This Article
  • APA Style

    Raoelina Andriambololona, Ravo Tokiniaina Ranaivoson, Rakotoson Hanitriarivo, Wilfrid Chrysante Solofoarisina. (2015). Study on Linear Canonical Transformation in a Framework of a Phase Space Representation of Quantum Mechanics. International Journal of Applied Mathematics and Theoretical Physics, 1(1), 1-8. https://doi.org/10.11648/j.ijamtp.20150101.11

    Copy | Download

    ACS Style

    Raoelina Andriambololona; Ravo Tokiniaina Ranaivoson; Rakotoson Hanitriarivo; Wilfrid Chrysante Solofoarisina. Study on Linear Canonical Transformation in a Framework of a Phase Space Representation of Quantum Mechanics. Int. J. Appl. Math. Theor. Phys. 2015, 1(1), 1-8. doi: 10.11648/j.ijamtp.20150101.11

    Copy | Download

    AMA Style

    Raoelina Andriambololona, Ravo Tokiniaina Ranaivoson, Rakotoson Hanitriarivo, Wilfrid Chrysante Solofoarisina. Study on Linear Canonical Transformation in a Framework of a Phase Space Representation of Quantum Mechanics. Int J Appl Math Theor Phys. 2015;1(1):1-8. doi: 10.11648/j.ijamtp.20150101.11

    Copy | Download

  • @article{10.11648/j.ijamtp.20150101.11,
      author = {Raoelina Andriambololona and Ravo Tokiniaina Ranaivoson and Rakotoson Hanitriarivo and Wilfrid Chrysante Solofoarisina},
      title = {Study on Linear Canonical Transformation in a Framework of a Phase Space Representation of Quantum Mechanics},
      journal = {International Journal of Applied Mathematics and Theoretical Physics},
      volume = {1},
      number = {1},
      pages = {1-8},
      doi = {10.11648/j.ijamtp.20150101.11},
      url = {https://doi.org/10.11648/j.ijamtp.20150101.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijamtp.20150101.11},
      abstract = {We present a study on linear canonical transformation in the framework of a phase space representation of quantum mechanics that we have introduced in our previous work [1]. We begin with a brief recall about the so called phase space representation. We give the definition of linear canonical transformation with the transformation law of coordinate and momentum operators. We establish successively the transformation laws of mean values, dispersions, basis state and wave functions. Then we introduce the concept of isodispersion linear canonical transformation.},
     year = {2015}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Study on Linear Canonical Transformation in a Framework of a Phase Space Representation of Quantum Mechanics
    AU  - Raoelina Andriambololona
    AU  - Ravo Tokiniaina Ranaivoson
    AU  - Rakotoson Hanitriarivo
    AU  - Wilfrid Chrysante Solofoarisina
    Y1  - 2015/04/08
    PY  - 2015
    N1  - https://doi.org/10.11648/j.ijamtp.20150101.11
    DO  - 10.11648/j.ijamtp.20150101.11
    T2  - International Journal of Applied Mathematics and Theoretical Physics
    JF  - International Journal of Applied Mathematics and Theoretical Physics
    JO  - International Journal of Applied Mathematics and Theoretical Physics
    SP  - 1
    EP  - 8
    PB  - Science Publishing Group
    SN  - 2575-5927
    UR  - https://doi.org/10.11648/j.ijamtp.20150101.11
    AB  - We present a study on linear canonical transformation in the framework of a phase space representation of quantum mechanics that we have introduced in our previous work [1]. We begin with a brief recall about the so called phase space representation. We give the definition of linear canonical transformation with the transformation law of coordinate and momentum operators. We establish successively the transformation laws of mean values, dispersions, basis state and wave functions. Then we introduce the concept of isodispersion linear canonical transformation.
    VL  - 1
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Theoretical Physics Dept., Institut National des Sciences et Techniques Nucléaires (INSTN-Madagascar), Antananarivo, Madagascar

  • Theoretical Physics Dept., Institut National des Sciences et Techniques Nucléaires (INSTN-Madagascar), Antananarivo, Madagascar

  • Theoretical Physics Dept., Institut National des Sciences et Techniques Nucléaires (INSTN-Madagascar), Antananarivo, Madagascar

  • Theoretical Physics Dept., Institut National des Sciences et Techniques Nucléaires (INSTN-Madagascar), Antananarivo, Madagascar

  • Sections