The environmental pollution caused by the mismanagement of household waste dumps and their leachate in developing countries has led researchers to explore adsorption treatment processes using shales from Côte d'Ivoire. To carry out this study, mineralogical characterization by X-ray Diffraction and Infrared of the shales was required prior to treatment. Using humic acid extracted from the leachates, adsorption tests were carried out using batch adsorption tests, and the optimum adsorption parameters were determined and modeled. The results of the mineralogical characterization revealed the presence of certain minerals. Batch adsorption treatment using slate from Côte d'Ivoire showed that the optimum concentration of slate to use was 30 g/L for a concentration of 15 mg/L humic acid. The duration of agitation at equilibrium was 60 minutes, with a maximum adsorption rate of 92 %. The effect of pH on the adsorption of humic acids showed that, in general, the evolution of adsorption rates was inversely proportional to the increase in pH. The highest yields were obtained at pH levels between 3.5 and 5.5. The results of the influence of the initial concentration of humic acids showed an increase in adsorption efficiency with the increase in the initial concentration up to 100 mg/L. The pseudo-second order model better described the adsorption of humic acid on the shale; it is accompanied by intra-particle diffusion, therefore by a contribution of active sites inside the pores.
Published in | International Journal of Environmental Monitoring and Analysis (Volume 13, Issue 2) |
DOI | 10.11648/j.ijema.20251302.11 |
Page(s) | 49-60 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2025. Published by Science Publishing Group |
Landfills, Leachate, Shale, Humic Acid, Modeling Adsorption, X-Ray Diffraction, Infrared
[1] | Gruau, G.; Birgand, F.; Jardé, E.; Novince, E. Pollution des captages d‘eau brutes de Bretagne par les Matières Organiques. Rapport de synthèse du groupe d‘Etude sur la Pollution des eaux par les Matières Organiques. 2004, 108 p. |
[2] | Conseil Scientifique de l’Environnement de Bretagne. FICHES TECHNIQUES & SCIENTIFIQUES : Pour la compréhension des bassins versants et le suivi de la qualité de l'eau. 2005, 21p. |
[3] |
Gruau, G.; Birgand, F.; Novince, E.; Jardé, E. Pollution des captages d’eau brute de Bretagne par les matières organiques. Rapport de synthèse. Tableau de bord de la pollution. Causes possibles. Recommandations. Rapport Drass et région Bretagne, 2004b, 108 p.
https://irsteadoc.irstea.fr/oa/PUB00016536-pollution-des-captages-eau-brute-bretagne-par-les.html |
[4] | Seo, DJ.; Kim, YJ.; Ham, SY.; Lee, DH. Characterization of dissolved organic matter in leachate discharged from final disposal sites which contained municipal solid waste incineration residues. J. Hazard. Mater., 2007, 148(3): 679-692. |
[5] | Adjiri, O. A.; Gone, D. L.; Kouame I. K.; Kamagate, B.; Biemi, J. La caractérisation de la pollution chimique et microbiologique de l’environnement de la décharge d’Akouédo, Abidjan (Côte d’Ivoire). Int. J. Biol. Chem. Sci., 2008, 2(4): 401-410. |
[6] | Ministère de la Transition Ecologique et Solidaire. Guide technique relatif à l’évaluation de l’état des eaux de surface continentales (cours d’eau, canaux, plans d’eau). Directive 2000/60/CE du 23 octobre 2000 du Parlement européen et du Conseil établissant un cadre pour une politique communautaire dans le domaine de l’eau. 2019, 123 p. |
[7] | Birgand, F. ; Novince, E.; Gruau, G.; Bioteau, T. Facteurs expliquant la présence de matières organiques dans les eaux superficielles en Bretagne. Rapport du Cemagref. Groupe d‘Etude sur la Pollution des eaux par les Matières Organiques. 2004, 78 p. |
[8] | Turki, N.; Belhaj, D.; Jaabiri, I.; Ayadi, H.; Kallel, M.; Bouzid, J. Determination of Organic Compounds in Landfill Leachates Treated by Coagulation-Flocculation and Fenton-Adsorption. J. Environ. Sci. Toxicol. Food Technol., 2013, 7 (3/18-25): 2319-2402. |
[9] | Emilien, B. Évolution de l'impact environnemental de lixiviats d'ordures ménagères sur les eaux superficielles et souterraines : approche hydrobiologique et hydrogéologique de la décharge d'Etueffont. Thèse de Doctorat, Université de Franche-Comté, Besançon, France, 2008, 248 p. |
[10] | Vigneault, B. Interactions des substances humiques dissoutes avec les algues unicellulaires - Mécanismes et implications. Thèse de Doctorat, Université de Quebec INRS -Water, Quebec, Canada, 2000, 164 p. |
[11] | Maiga, A. S. Qualité organoleptique de l’eau de consommation produite et distribuée par l’EDM. sa dans la ville de Bamako : évaluation saisonnière. Thèse de Doctorat à l’Université de Bamako, Bamako, Mali, 2005, 77 p. |
[12] | Goné, DL (2010). Matières organiques naturelles dans les eaux de surfaces du bassin versant de l’Agneby : Caractérisation et élimination par coagulation-floculation au cours de la production d’eau potable. Thèse de Doctorat d’Etat, Université Nangui Abrogoua, Abidjan, Côte d’Ivoire, 2010, 257 p. |
[13] | Le chevallier, M. W. Coliform regrowth in drinking water: A review J. AM. Water Work. Assoc., 1990, 82 (11): 74-86. |
[14] | Souhaila, T. Études de traitement des lixiviats des déchets urbains par les Procédés d’Oxydation Avancée photochimiques et électrochimiques de la décharge tunisienne “Jebel Chakir” Thèse de Doctorat à l’Université Paris-Est, Paris, France, 2012, 225 p. |
[15] |
United Nations Environment Program. Africa Environment Outlook: Past, present and future perspectives. 2002, 19 p.
http://www.unep.org/dewa/Africa/publications/AEO % 2D1. Consulté le 17 janvier 2019. |
[16] |
Henze, M. et Ujang, Z. Sustainable Sanitation for Developing Countries. In Henze. M., Ujang Z. (Eds). Municipal wastewater Management in Developing Countries: Principles and Engineering. International Water Association (IWA) Publishing, London, England, 2006, 364 p.
https://www.amazon.com/Municipal-Wastewater-Management-Developing-Countries/dp/1843390302 |
[17] | Zalaghi, A., Lamchouri, F., Toufik, H., & Merzouki, M. Valorisation des matériaux naturels poreux dans le traitement des Lixiviats de la décharge publique non contrôlée de la ville de Taza, Maroc. J. Mater. Environ. Sci., 2014, 5 (5): 1643-1652. |
[18] | Claret, F., Schäfer, T., Brevet, J., Reiller, P. E. Fractionation of Suwannee River fulvic acid and Aldrich humic acids on α-Al2O3: spectroscopic evidence. Environ. Sci. Technol., 2008, 42: 8793-8809. |
[19] | Bennama, T., Abdelkader, Y., Zoubir, D., Abdelkader, D. Caractérisation et traitement physico-chimique des lixiviats de la décharge publique d’El-Kerma par adsorption en discontinu sur de la sciure de bois naturelle et activée chimiquement. Water Qual. Res. J. Can. 2010, 45(1): 81-90. |
[20] | Reiller, P., Moulin, V., Casanova, F., Dautel, C. Retention behaviour of humic substances onto mineral surfaces and consequences upon thorium (IV) mobility: case of iron oxides. Appl. Geochem., 2002, 17: 1538-1551. |
[21] | Tan, X. L., Wang, X. K., Geckeis, H., and Rabung, T. H. Sorption of Eu(III) on Humic Acid or Fulvic Acid Bound to Hydrous Alumina Studied by SEM-EDS, XPS, TRLFS, and Batch Techniques. Environ. Sci. Technol., 2008, 42: 6532-6537. |
[22] | Zhao, G., Li, E., Li, J., Xu, M., Huang, Q. and Rong, X. Effects of Interfaces of Goethite and Humic Acid-Goethite Complex on Microbial Degradation of Methyl Parathion. Front. Microbiol., 2018, 9, 1748. |
[23] | Coulibaly, S. L.; Yvon, J.; Coulibaly, L. Physicochemical Characterization of Lomo Nord black shale and application as low cost material for phosphate adsorption in aqueous solution. J. Environ. Earth Sci., 2015, 5: 42-60. |
[24] | Ouattara, G. Structure du batholite de Ferkessédougou (secteur de Zuénoula, Côte-d'Ivoire) : Implications sur l'interprétation du paléoprotérozoïque d'Afrique de l'ouest à 2.1 Ga. Thèse Doctorat, Université d’Orléans, Orléans, France, 1998, 291 p. |
[25] | Coulibaly, Y.; Koné, T.; Kamagaté, M.; Ouattara, P. J-M.; Coulibaly, S. L.; Coulibaly, L. Characterization of the Leachate from the Municipal Landfill of Akouédo (Abidjan, Côte d´Ivoire). J. Environ. Earth Sci., 2020, 10(4): 17-22. |
[26] |
Cunha, T. J. F.; Novotny, E. H.; Madari, B. E.; Martin-Neto, L.; Rezende, M de O.; Canelas, LP.; Benites, V de M. Spectroscopy Characterization of Humic Acids Isolated from Amazonian Dark Earth Soils (Terra Preta De Índio). (eds.), Amazonian Dark Earths: Wim Sombroek’s Vision, 2009, 10 p.
https://core.ac.uk/download/pdf/45486839.pdf consulté le 22 08/2021. |
[27] | Giovanela, M.; Crespo, JS.; Antunes, M.; Adametti, DS.; Fernandes, AN. Chemical and spectroscopic characterization of humic acids extracted from the bottom sediments of a Brazilian subtropical microbasin. J. Mol. Struct., Elsevier, 2010, 981(1-3): 111-119. |
[28] | Sun, L M. et Meunier, F. Adsorption. Aspects théoriques. Techniques de l’Ingénieur, 2003, 2: 1-20. |
[29] | Ho Y. S, McKay G. Pseudo-second-order model for sorption process. Process Biochemistry, 1999, 34: 451–465. |
[30] | Tunali S, Özcan AS, Özcan A, Gedikbey T. Kinetics and equilibrium studies for the adsorption of Acid Red 57 from aqueous solutions onto calcined-alunite, J. Hazard. Mater. 2006, 135: 141–148. |
[31] | Ama, A. B. Gestion des eaux usées domestiques : caractérisation en réseau et prétraitement à l’aide d’un filtre à sable à alimentation intermittente. Thèse de Doctorat, Université NANGUI ABROGOUA, Abidjan, Côte d’Ivoire. 2013, 138 p. |
[32] | Kögel-Knabner, I.; Guggenberger, G.; Kleber, M.; Kandeler, E.; Kalbitz, K.; Scheu, S.; Eusterhues, K.; Leinweber, P. Organo-mineral associations in temperate soils: Integrating biology, mineralogy, and organic matter chemistry. J. Plant Nutrition and Soil Sci., 2008, 171: 61- 82. |
[33] | Khansaa, Al-E and Fawwaz, K. Adsorption of Humic Acid onto Jordanian Kaolinite Clay: Effects of Humic Acid Concentration, pH, and Temperature. Sci. J. Chem., 2018, 6(1): 1-10. |
[34] | Fooken, U. et Liebezeita, G. Distinction of marine and terrestrial origin of humic acids in North Sea surface sediments by absorption spectroscopy. Mar. Geol., 2000, 164: 173-181. |
[35] | Niu, H.; Yang, H.; Tong, L.; Zhong, S.; Liu, Y. Spectral study of humic substance extract from pressurized oxidizing slag of Carlin-typed gold deposit. J. Phys.: Conf. Ser., 2019, 7: 1347- 012027. |
[36] | Jangorzo, NS. Quantification du processus d’agrégation dans les Technosols. Thèse de Doctorat à l’Université de Lorraine, Lorraine, France, 2013, 188 p. |
[37] | Guergazi, S.; Amimeur, D.; Achour, S. Elimination des substances humiques de deux eaux de surface algériennes par adsorption sur charbon actif et sur bentonite. LARHYSS J., 2013, 13: 125-137. |
[38] | Wang, M; Liao, L; Zhang, X; Li, Z. Adsorption of low concentration humic acid from water by palygorskite. Appl. Clay Sci., 2012, 67: 164-168. |
[39] | Ahangar, A. G. The effect of minerals on non-ionic compound sorption by changing the sorption capacity of soil organic matter. J. Soil Sci. Plant Nutrition, 2012, 12(4), 825-833. |
[40] | Blacke, G. U.; Kulikova, N. A.; Hesse, S. Adsorption of humic substances onto kaolin clay related to their structural features. Soil Sci. Soc. Am. J., 2002, 66: 1805-1812. |
[41] | Kleber, M.; Eusterhues, K.; Keiluweitk, M.; Mikutta, C.; Mikutta, R.; Nico, PS. Mineral–Organic Associations: Formation, Properties, and Relevance in Soil Environments. Adv. Agron., Elsevier Inc., 2015, 130: 0065-2113. |
[42] | Sigg, L. Regulation of trace éléments in lakes: the role of sedimentation. In: J. Buffle, and R. R. De Vitre Eds., Chem. Biol. regulation aquatic systems, Lewis, 1994, 175-195. |
[43] | Coulibaly. S. L. (2014). Abattement des phosphates des eaux usées par adsorption sur des géo-matériaux constitués de Latérite, grès et schistes ardoisiers. Thèse de Doctorat, Université de Lorraine, (France)/Université NANGUI ABROGOUA, Abidjan, Côte d’Ivoire, 233 p. |
[44] | Daifullah, AAM; Girgis, BS.; Gad, HMH. A study of the factors affecting the removal of humic acid by activated carbon prepared from biomass material. Colloids Surf. A., 2004, 235: 1-10. |
[45] | Chotzen, R. A.; Polubesova, T.; Chefetz, B.; Mishael, Y. G. Adsorption Of Soil-Derived Humic Acid By Seven Clay Minerals: A Systematic Study. Clays and Clay Minerals, 2016, 64, 628-638. |
[46] | Salman, M.; El–Eswed, B.; Khalili, F. Adsorption of humic acid on bentonite. Applied Clay Sci., 2007, 38: 51-56. |
[47] | Zhang, L.; Luo, L.; Zhang, S. Integrated investigations on the adsorption mechanisms of fulvic and humic acids on three clay minerals. Colloids Surf. A., 2012, 406: 84-90. |
[48] | Koua-Koffi, N. A. A.; Coulibaly, L. S.; Sangare, D.; Coulibaly, L. Laterite, sandstone and shale as adsorbents for the removal of arsenic from water. Am. J. Analyt. Chem., 2018, 9: 340-352. |
[49] | Achour, S. et Seghairi, N. Possibilités de rétention de substances humiques par adsorption sur la bentonite. LARHYSS J., 2002, 01: 08-14. |
[50] |
Gueu, S. Elimination des acides humiques presents dans l’eau par adsorption et/ou photocatalyse. Thèse de Doctorat, Université de Lorraine, (France)/ l’Institut National Polytechnique Felix Houphouet Boigny de Yamoussoukro, Yamoussoukro, Côte d’Ivoire. 2019, 136 p.
https://cea-valopro.inphb.ci/uploads/publications/publication%20these/umri%2058/GUEU%20Soumahoro.pdf |
[51] | Zhang, Y. Y.; Lv, J. W.; Song, Y.; Dong, X. J.; Fang, Q. Study on kinetics of adsorption of humic acid modified by ferric chloride on U(VI). Earth and Environ. Sci., 2017, 94: 012-185. |
[52] | Abdel-Rahman, L. H.; Abu-Dief, A. M.; Al-Farhan, B. S.; Yousef, D et El-Sayed, M E A. Kinetic study of humic acid adsorption onto smectite: The role of individual and blend background electrolyte. AIMS Materials Sci., 2019, 6(6): 1176-1190. |
APA Style
Coulibaly, Y., Kone, T., Coulibaly, S. L., Mbey, J. A., Coulibaly, L., et al. (2025). Use of Lomo-Nord Shales in Ivory Coast for the Adsorption Treatment of Humic Acid Extracted from Leachate from the Akouédo Landfill. International Journal of Environmental Monitoring and Analysis, 13(2), 49-60. https://doi.org/10.11648/j.ijema.20251302.11
ACS Style
Coulibaly, Y.; Kone, T.; Coulibaly, S. L.; Mbey, J. A.; Coulibaly, L., et al. Use of Lomo-Nord Shales in Ivory Coast for the Adsorption Treatment of Humic Acid Extracted from Leachate from the Akouédo Landfill. Int. J. Environ. Monit. Anal. 2025, 13(2), 49-60. doi: 10.11648/j.ijema.20251302.11
AMA Style
Coulibaly Y, Kone T, Coulibaly SL, Mbey JA, Coulibaly L, et al. Use of Lomo-Nord Shales in Ivory Coast for the Adsorption Treatment of Humic Acid Extracted from Leachate from the Akouédo Landfill. Int J Environ Monit Anal. 2025;13(2):49-60. doi: 10.11648/j.ijema.20251302.11
@article{10.11648/j.ijema.20251302.11, author = {Yoh Coulibaly and Tiangoua Kone and Sandotin Lassina Coulibaly and Jean Aimé Mbey and Lacina Coulibaly and Emmanuel Djoufac Woumfo}, title = {Use of Lomo-Nord Shales in Ivory Coast for the Adsorption Treatment of Humic Acid Extracted from Leachate from the Akouédo Landfill }, journal = {International Journal of Environmental Monitoring and Analysis}, volume = {13}, number = {2}, pages = {49-60}, doi = {10.11648/j.ijema.20251302.11}, url = {https://doi.org/10.11648/j.ijema.20251302.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijema.20251302.11}, abstract = {The environmental pollution caused by the mismanagement of household waste dumps and their leachate in developing countries has led researchers to explore adsorption treatment processes using shales from Côte d'Ivoire. To carry out this study, mineralogical characterization by X-ray Diffraction and Infrared of the shales was required prior to treatment. Using humic acid extracted from the leachates, adsorption tests were carried out using batch adsorption tests, and the optimum adsorption parameters were determined and modeled. The results of the mineralogical characterization revealed the presence of certain minerals. Batch adsorption treatment using slate from Côte d'Ivoire showed that the optimum concentration of slate to use was 30 g/L for a concentration of 15 mg/L humic acid. The duration of agitation at equilibrium was 60 minutes, with a maximum adsorption rate of 92 %. The effect of pH on the adsorption of humic acids showed that, in general, the evolution of adsorption rates was inversely proportional to the increase in pH. The highest yields were obtained at pH levels between 3.5 and 5.5. The results of the influence of the initial concentration of humic acids showed an increase in adsorption efficiency with the increase in the initial concentration up to 100 mg/L. The pseudo-second order model better described the adsorption of humic acid on the shale; it is accompanied by intra-particle diffusion, therefore by a contribution of active sites inside the pores. }, year = {2025} }
TY - JOUR T1 - Use of Lomo-Nord Shales in Ivory Coast for the Adsorption Treatment of Humic Acid Extracted from Leachate from the Akouédo Landfill AU - Yoh Coulibaly AU - Tiangoua Kone AU - Sandotin Lassina Coulibaly AU - Jean Aimé Mbey AU - Lacina Coulibaly AU - Emmanuel Djoufac Woumfo Y1 - 2025/05/22 PY - 2025 N1 - https://doi.org/10.11648/j.ijema.20251302.11 DO - 10.11648/j.ijema.20251302.11 T2 - International Journal of Environmental Monitoring and Analysis JF - International Journal of Environmental Monitoring and Analysis JO - International Journal of Environmental Monitoring and Analysis SP - 49 EP - 60 PB - Science Publishing Group SN - 2328-7667 UR - https://doi.org/10.11648/j.ijema.20251302.11 AB - The environmental pollution caused by the mismanagement of household waste dumps and their leachate in developing countries has led researchers to explore adsorption treatment processes using shales from Côte d'Ivoire. To carry out this study, mineralogical characterization by X-ray Diffraction and Infrared of the shales was required prior to treatment. Using humic acid extracted from the leachates, adsorption tests were carried out using batch adsorption tests, and the optimum adsorption parameters were determined and modeled. The results of the mineralogical characterization revealed the presence of certain minerals. Batch adsorption treatment using slate from Côte d'Ivoire showed that the optimum concentration of slate to use was 30 g/L for a concentration of 15 mg/L humic acid. The duration of agitation at equilibrium was 60 minutes, with a maximum adsorption rate of 92 %. The effect of pH on the adsorption of humic acids showed that, in general, the evolution of adsorption rates was inversely proportional to the increase in pH. The highest yields were obtained at pH levels between 3.5 and 5.5. The results of the influence of the initial concentration of humic acids showed an increase in adsorption efficiency with the increase in the initial concentration up to 100 mg/L. The pseudo-second order model better described the adsorption of humic acid on the shale; it is accompanied by intra-particle diffusion, therefore by a contribution of active sites inside the pores. VL - 13 IS - 2 ER -