In this paper, we obtain convergence of a posteriori error indicator to 0 when the mesh size h goes to 0 for the finite element approximation of source-boundary control problems governed by a system of semi-linear elliptic equations. We give the upper and lower bound of a posteriori error, and convergency of a posteriori error indicator.
Published in | Mathematics Letters (Volume 11, Issue 2) |
DOI | 10.11648/j.ml.20251102.12 |
Page(s) | 41-59 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2025. Published by Science Publishing Group |
Semi-linear Elliptic Equations, Source Control, A Posteriori Error Estimate
[1] | Wei Gong et al., Adaptive finite element method for parabolic equations with Dirac measure, Comput. Methods in Applied Mechanics and engineerig, 328(2018) 217-241. |
[2] | Chunjia Bi et al., Two grid finite element method and it’s a posteriori error Estimates for a non-monotone quasi-linear elliptic problem under minimal regularity of data, Computers and Mathematics with Applications, 76(2018) 98-112. |
[3] | Chuanjun Chen et al., A posteriori error Estimates of two grid finite volume element method for non-linear elliptic problem, Computers and Mathematics with Applications, 75(2018) 1756-1766. |
[4] | Xingyang Ye, Chanju Xu, A Posteriori error estimates for the fractional optimal control problems, Journal of Inequalities and Applications, 141(2015), 1-13. |
[5] | Lin Li et al., A posteriori error Estimates of spectral method for non-linear parabolic optimal control problem, Journal of inequalities and applications, 138(2018) 1-23. |
[6] | E. Casas et al., Error Estimates for the numerical approximation of Dirichlet boundary control for semilinear elliptic equations, SIAM J. Control Optim., 45(2006) 1586-1611. |
[7] | D. Y. Shi, H. J. Yang, Superconvergence analysis of finite element method for time-fractional thermistor problem, Appl. Math. Comput., 323 (2018) 31-42. |
[8] | D. Y. Shi, H. J. Yang, Superconvergence analysis of nonconforming FEM fornonlinear time-dependent thermistor problem, Appl. Math. and Compu., 347 (2019) 210-224. |
[9] | Y. Chen, L. Chen, X. Zhang, Two-grid method for nonlinear parabolic equations by expande mixed finite element methods, Numer. Methods Part. Diff. Equ., 29(2013) 1238-1256. |
[10] | Meyer C., Error estimates for the finite element approximation of an elliptic control problem with pointwise state and control constraints, Control and Cybern., 37(1), 51-83 (2008). |
[11] | Wollner W., A posteriori error estimates for a finite element distretization of Interior point methods for an elliptic optimization problem with state constraints, Numer. Math. Vol. 120, No. 4, 133-159 (2012). |
[12] | A. Rosch, D. Wachsmuth, A posteriori error estimates for optimal control problems with state and control constraints, Numerische Mathematik, Vol. 120, No. 4, 733-762 (2012). |
[13] | O. Benedix, B. Vexler, A posteriori error estimation and adaptivity for elliptic optimal control problems with state constraints, Comput. Optim. Appl., 44(1), 3-25 (2009). |
[14] | Dib S., Girault V., Hecht F. and Sayah T., A posteriori error estimates for Darcy’s problem coupled with the heat equation, ESAIM Mathematical Modelling and Numerical Analysis, |
[15] | A. Allenes, E. Otarola, R. Rankin. A posteriori error estimation for a PDE constrained optimization problem involving the generalized Oceen equations, SIAM J. Sci. Comput., Vol. 40, No. 4, A2200-A2233, 2018. |
[16] | Natalia Kopteva. Error analysis of the L1 method on graded and uniform meshes for a fractional-derivative problem in two and three dimensions. Math. Comp., 88(319): 2135-2155, 2019. |
[17] | Xiangcheng Zheng and Hong Wang. Optimal-order error estimates finit element approximations to variable-order time-fractional diffusion equations without regularity assumptions of the true solutions. IMA J. Numer. Anal., 41(2): 1522-1545, 2021. |
[18] | Natalia Kopteva. Pointwise-in-time a posteriori error control for time-fractional parabolic equations. Appl. Math. Lett., 123: Paper No. 107515, 8, 2022. |
APA Style
Kim, C. I., Kang, J. H., Sok, G. C. (2025). A Posteriori Error Estimates and Convergence of Error Indicator by FEM for a Semi-linear Elliptic Source-boundary Control Problem. Mathematics Letters, 11(2), 41-59. https://doi.org/10.11648/j.ml.20251102.12
ACS Style
Kim, C. I.; Kang, J. H.; Sok, G. C. A Posteriori Error Estimates and Convergence of Error Indicator by FEM for a Semi-linear Elliptic Source-boundary Control Problem. Math. Lett. 2025, 11(2), 41-59. doi: 10.11648/j.ml.20251102.12
@article{10.11648/j.ml.20251102.12, author = {Chang Il Kim and Jong Hyok Kang and Gi Chol Sok}, title = {A Posteriori Error Estimates and Convergence of Error Indicator by FEM for a Semi-linear Elliptic Source-boundary Control Problem }, journal = {Mathematics Letters}, volume = {11}, number = {2}, pages = {41-59}, doi = {10.11648/j.ml.20251102.12}, url = {https://doi.org/10.11648/j.ml.20251102.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ml.20251102.12}, abstract = {In this paper, we obtain convergence of a posteriori error indicator to 0 when the mesh size h goes to 0 for the finite element approximation of source-boundary control problems governed by a system of semi-linear elliptic equations. We give the upper and lower bound of a posteriori error, and convergency of a posteriori error indicator. }, year = {2025} }
TY - JOUR T1 - A Posteriori Error Estimates and Convergence of Error Indicator by FEM for a Semi-linear Elliptic Source-boundary Control Problem AU - Chang Il Kim AU - Jong Hyok Kang AU - Gi Chol Sok Y1 - 2025/09/03 PY - 2025 N1 - https://doi.org/10.11648/j.ml.20251102.12 DO - 10.11648/j.ml.20251102.12 T2 - Mathematics Letters JF - Mathematics Letters JO - Mathematics Letters SP - 41 EP - 59 PB - Science Publishing Group SN - 2575-5056 UR - https://doi.org/10.11648/j.ml.20251102.12 AB - In this paper, we obtain convergence of a posteriori error indicator to 0 when the mesh size h goes to 0 for the finite element approximation of source-boundary control problems governed by a system of semi-linear elliptic equations. We give the upper and lower bound of a posteriori error, and convergency of a posteriori error indicator. VL - 11 IS - 2 ER -