American Journal of Nano Research and Applications

Submit a Manuscript

Publishing with us to make your research visible to the widest possible audience.

Propose a Special Issue

Building a community of authors and readers to discuss the latest research and develop new ideas.

Comparison of Four Ionic Liquid Force Fields to an Ab Initio Molecular Dynamics Simulation

The reliability of four force fields developed for 1-alkyl-3-methylimidazolium bis¬(tri¬fluoro¬methylsulfonyl)imide ionic liquids are compared to an ab inito molecular dynamics simulation regarding structural properties. Except the hydrogen bond structure between the most acidic hydrogen atom of the imidazolium ring and the nitrogen atom of the anion as well as the intramolecular potential surface of the anion in solution, structural properties are reproduced very well by all investigated force fields. Most recommended can be the force field developed by Canongia Lopes and Pádua because it reproduces best the hydrogen bond structure between the most acidic hydrogen atom of the imidazolium ring and the nitrogen atom of the anion.

Ionic Liquids, Classical Molecular Dynamics Simulations, Ab Initio Molecular Dynamics Simulations

APA Style

Stefan Zahn, Richard Cybik. (2014). Comparison of Four Ionic Liquid Force Fields to an Ab Initio Molecular Dynamics Simulation. American Journal of Nano Research and Applications, 2(6-1), 19-26. https://doi.org/10.11648/j.nano.s.2014020601.13

ACS Style

Stefan Zahn; Richard Cybik. Comparison of Four Ionic Liquid Force Fields to an Ab Initio Molecular Dynamics Simulation. Am. J. Nano Res. Appl. 2014, 2(6-1), 19-26. doi: 10.11648/j.nano.s.2014020601.13

AMA Style

Stefan Zahn, Richard Cybik. Comparison of Four Ionic Liquid Force Fields to an Ab Initio Molecular Dynamics Simulation. Am J Nano Res Appl. 2014;2(6-1):19-26. doi: 10.11648/j.nano.s.2014020601.13

1. Wasserscheid, P.; Keim, W. Angew. Chem. Int. Ed. 2000, 39, 3772–3789.
2. Plechkova, N. V.; Seddon, K. R. Chem. Soc. Rev. 2008, 37, 123–150.
3. Walden, P. Bull. Acad. Sci. St Petersburg 1914, 405–422.
4. Wilkes, J. S.; Zaworotko, M. J. J. Chem. Soc., Chem. Commun. 1992, 965–967.
5. Li, C.; Lin, J. J. Mater. Chem. 2010, 20, 6831–6847.
6. Dupont, J.; Scholten, J. D. Chem. Soc. Rev. 2010, 39, 1780–1804.
7. Zahn, S.; Uhlig, F.; Thar, J.; Spickermann, C.; Kirchner, B. Angew. Chem. Int. Ed. 2008, 47, 3639–3641.
8. Zahn, S.; Bruns, G.; Thar, J.; Kirchner, B. Phys. Chem. Chem. Phys. 2008, 10, 6921–6924.
9. Zahn, S.; Kirchner, B. J. Phys. Chem. A 2008, 112, 8430–8435.
10. Izgorodina, E. I.; Bernard, U. L.; MacFarlane, D. R. J. Phys. Chem. A 2009, 113, 7064–7072.
11. Kohanoff, J.; Pinilla, C.; Youngs, T. G. A.; Artacho, E.; Soler, J. M. J. Chem. Phys. 2011, 135, 154505.
12. Grimme, S.; Hujo, W.; Kirchner, B. Phys. Chem. Chem. Phys. 2012, 14, 4875–4883.
13. Zahn, S.; MacFarlane, D. R.; Izgorodina, E. I. Phys. Chem. Chem. Phys. 2013, 15, 13664–13675.
14. Del Pópolo, M.; Lynden-Bell, R.; Kohanoff, J. J. Phys. Chem. B 2005, 109, 5895–5902.
15. Bühl, M.; Chaumont, A.; Schurhammer, R.; Wipff, G. J. Phys. Chem. B 2005, 109, 18591–18599.
16. Prado, C. E. R.; Pópolo, M. G. D.; Youngs, T. G. A.; Kohanoff, J.; and, R. M. L.-B. Mol. Phys. 2006, 104, 2477–2483.
17. Bhargava, B.; Balasubramanian, S. Chem. Phys. Lett. 2006, 417, 486–491.
18. Ghatee, M. H.; Ansari, Y. J. Chem. Phys. 2007, 126, 154502.
19. Bhargava, B. L.; Balasubramanian, S. J. Phys. Chem. B 2007, 111, 4477–4487.
20. Bagno, A.; D’Amico, F.; Saielli, G. ChemPhysChem 2007, 8, 873–881.
21. Bhargava, B. L.; Balasubramanian, S. J. Phys. Chem. B 2008, 112, 7566–7573.
22. Bhargava, B. L.; Saharay, M.; Balasubramanian, S. Bull. Mater. Sci. 2008, 31, 327–334.
23. Spickermann, C.; Thar, J.; Lehmann, S. B. C.; Zahn, S.; Hunger, J.; Buchner, R.; Hunt, P. A.; Welton, T.; Kirchner, B. J. Chem. Phys. 2008, 129, 104505.
24. Thar, J.; Brehm, M.; Seitsonen, A. P.; Kirchner, B. J. Phys. Chem. B 2009, 113, 15129–15132.
25. Zahn, S.; Thar, J.; Kirchner, B. J. Chem. Phys. 2010, 132, 124506.
26. Mallik, B. S.; Siepmann, J. I. J. Phys. Chem. B 2010, 114, 12577–12584.
27. Krekeler, C.; Dommert, F.; Schmidt, J.; Zhao, Y. Y.; Holm, C.; Berger, R.; Delle Site, L. Phys. Chem. Chem. Phys. 2010, 12, 1817–1821.
28. Zahn, S.; Wendler, K.; Delle Site, L.; Kirchner, B. Phys. Chem. Chem. Phys. 2011, 13, 15083–15093.
29. Wendler, K.; Zahn, S.; Dommert, F.; Berger, R.; Holm, C.; Kirchner, B.; Delle Site, L. J. Chem. Theory Comput. 2011, 7, 3040–3044.
30. Brüssel, M.; Brehm, M.; Voigt, T.; Kirchner, B. Phys. Chem. Chem. Phys. 2011, 13, 13617–13620.
31. Brüssel, M.; Brehm, M.; Pensado, A. S.; Malberg, F.; Ramzan, M.; Stark, A.; Kirchner, B. Phys. Chem. Chem. Phys. 2012, 14, 13204–13215.
32. Pensado, A. S.; Brehm, M.; Thar, J.; Seitsonen, A. P.; Kirchner, B. ChemPhysChem 2012, 13, 1845–1853.
33. Wendler, K.; Brehm, M.; Malberg, F.; Kirchner, B.; Delle Site, L. J. Chem. Theory Comput. 2012, 8, 1570–1579.
34. Brehm, M.; Weber, H.; Pensado, A. S.; Stark, A.; Kirchner, B. Phys. Chem. Chem. Phys. 2012.
35. Zhang, Y.; Maginn, E. J. J. Phys. Chem. B 2012, 116, 10036–10048.
36. Bodo, E.; Sferrazza, A.; Caminiti, R.; Mangialardo, S.; Postorino, P. J. Chem. Phys. 2013, 139, 144309.
37. Hollóczki, O.; Kelemen, Z.; Könczöl, L.; Szieberth, D.; Nyulászi, L.; Stark, A.; Kirchner, B. Chem.Phys.Chem. 2013, 14, 315–320.
38. Hollóczki, O.; Firaha, D. S.; Friedrich, J.; Brehm, M.; Cybik, R.; Wild, M.; Stark, A.; Kirchner, B. J. Phys. Chem. B 2013, 117, 5898–5907.
39. Firaha, D. S.; Kirchner, B. J. Chem. Eng. Data 2014, DOI: 10.1021/je500166d.
40. Thomas, M.; Brehm, M.; Hollóczki, O.; Kelemen, Z.; Nyulászi, L.; Pasinszki, T.; Kirchner, B. J. Chem. Phys. 2014, 141, 024510.
41. Thomas, M.; Brehm, M.; Hollóczki, O.; Kirchner, B. Chem. Eur. J. 2014, 20, 1622–1629.
42. Payal, R. S.; Balasubramanian, S. Phys. Chem. Chem. Phys. 2014, 16, 17458–17465.
43. Gabl, S.; Schröder, C.; Steinhauser, O. J. Chem. Phys. 2012, 137, 094501.
44. Hanke, C. G.; Price, S. L.; Lynden-Bell, R. M. Mol. Phys. 2001, 99, 801–809.
45. Hunt, P. A. Mol. Simul. 2006, 32, 1–10.
46. Pádua, A. A. H.; Costa Gomes, M. F.; Canongia Lopes, J. N. A. Acc. Chem. Res. 2007, 40, 1087–1096.
47. Wang, Y.; Jiang, W.; Yan, T.; Voth, G. A. Acc. Chem. Res. 2007, 40, 1193–1199.
48. Lynden-Bell, R. M.; Del Pópolo, M. G.; Youngs, T. G. A.; Kohanoff, J.; Hanke, C. G.; Harper, J. B.; Pinilla, C. C. Acc. Chem. Res. 2007, 40, 1138–1145.
49. Maginn, E. J. Acc. Chem. Res. 2007, 40, 1200–1207.
50. Bhargava, B. L.; Balasubramanian, S.; Klein, M. L. Chem. Commun. 2008, 3339–3351.
51. Kirchner, B. Top. Curr. Chem. 2009, 290, 213–262.
52. Borodin, O. J. Phys. Chem. B 2009, 113, 11463–11478.
53. Maginn, E. J. J. Phys.: Condens. Matter 2009, 21, 373101.
54. Dommert, F.; Wendler, K.; Berger, R.; Delle Site, L.; Holm, C. ChemPhysChem 2012, 13, 1625–1637.
55. Canongia Lopes, J. N.; Deschamps, J.; Pádua, A. A. H. J. Phys. Chem. B 2004, 108, 2038–2047.
56. Canongia Lopes, J. N.; Deschamps, J.; Pádua, A. A. H. J. Phys. Chem. B 2004, 108, 11250–11250.
57. Canongia Lopes, J. N.; Pádua, A. A. H. J. Phys. Chem. B 2004, 108, 16893–16898.
58. Canongia Lopes, J. N.; Pádua, A. A. H. J. Phys. Chem. B 2006, 110, 19586–19592.
59. Canongia Lopes, J. N.; Pádua, A. A. H.; Shimizu, K. J. Phys. Chem. B 2008, 112, 5039–5046.
60. Shimizu, K.; Almantariotis, D.; Costa Gomes, M. F.; Pádua, A. A. H.; Canongia Lopes, J. N. J. Phys. Chem. B 2010, 114, 3592–3600.
61. Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J. J. Am. Chem. Soc. 1996, 118, 1225–11236.
62. Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman, P. A. J. Am. Chem. Soc. 1995, 117, 5179.
63. Köddermann, T.; Paschek, D.; Ludwig, R. ChemPhysChem 2007, 8, 2464–2470.
64. Zhao, W.; Eslami, H.; und Florian Müller-Plathe, W. L. C. Z. Phys. Chem. 2007, 221, 1647–1662.
65. Youngs, T. G. A.; Hardacre, C. ChemPhysChem 2008, 9, 1548–1558.
66. Bhargava, B. L.; Balasubramanian, S. J. Chem. Phys. 2007, 127, 114510.
67. Morrow, T. I.; Maginn, E. J. J. Phys. Chem. B 2002, 106, 12807–12813.
68. Liu, H.; Maginn, E. J. Chem. Phys. 2011, 135, 124507.
69. Wang, J. M.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. J. Comput. Chem. 2004, 25, 1157–1174.
70. Bayly, C. I.; Cieplak, P.; Cornell, W. D.; Kollman, P. A. J. Phys. Chem. 1993, 97, 10269–10280.
71. Wang, Y.; Voth, G. A. J. Am. Chem. Soc. 2005, 127, 12192–12193.
72. Canongia Lopes, J.; Pádua, A. J. Phys. Chem. B 2006, 110, 3330–3335.
73. Triolo, A.; Russina, O.; Bleif, H.-J.; Di Cola, E. J. Phys. Chem. B 2007, 111, 4641–4644.
74. Xiao, D.; Rajian, J. R.; Cady, A.; Li, S.; Bartsch, R. A.; Quitevis, E. L. J. Phys. Chem. B 2007, 111, 4669–4677.
75. VandeVondele, J.; Krack, M.; Mohamed, F.; Parrinello, M.; Chassaing, T.; Hutter, J. J. Comp. Phys. Comm. 2005, 167, 103–128.
76. CP2K developers group, http://www.cp2k.org/.
77. Tokuda, H.; Hayamizu, K.; Ishii, K.; Susan, M. A. B. H.; Watanabe, M. J. Phys. Chem. B 2005, 109, 6103–6110.
78. Nosé, S. J. Chem. Phys. 1984, 81, 511–519.
79. Hoover, W. G. Phys. Rev. A 1985, 31, 1695–1697.
80. Martyna, G. J.; Klein, M. L.; Tuckerman, M. J. Chem. Phys. 1992, 97, 2635–2643.
81. Becke, A. D. Phys. Rev. A 1988, 38, 3098–3100.
82. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785–789.
83. Grimme, S. J. Comput. Chem. 2006, 27, 1787–1799.
84. VandeVondele, J.; Hutter, J. J. Chem. Phys. 2007, 127, 114105.
85. Goedecker, S.; Teter, M.; Hutter, J. Phys. Rev. B 1996, 54, 1703–1710.
86. Hartwigsen, C.; Goedecker, S.; Hutter, J. Phys. Rev. B 1998, 58, 3641–3662.
87. Krack, M. Theor. Chem. Acc. 2005, 114, 145–152.
88. Tao, J.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E. Phys. Rev. Lett. 2003, 91, 146401.
89. Kossmann, S.; Kirchner, B.; Neese, F. Mol. Phys. 2007, 105, 2049–2071.
90. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104.
91. Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257–2261.
92. Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; DeFrees, D. J.; Pople, J. A. J. Chem. Phys. 1982, 77, 3654–3665.
93. Baerends, E. J.; Ellis, D. E.; Ros, P. Chem. Phys. 1973, 2, 41–51.
94. Dunlap, B. I.; Connolly, J. W. D.; Sabin, J. R. J. Chem. Phys. 1979, 71, 3396–3402.
95. Weigend, F. Phys. Chem. Chem. Phys. 2006, 8, 1057–1065.
96. Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H. J. C. J. Comput. Phys. 1977, 23, 327–341.
97. Hockney, R. W.; Eastwood, J. W. Computer Simulation Using Particles; McGraw-Hill, 1981.
98. Plimpton, S. J. Comp. Phys. 1995, 117, 1–19.
99. Brehm, M.; Kirchner, B. J. Chem. Inf. Model. 2011, 51, 2007–2023.