American Journal of Environmental Protection

Research Article | | Peer-Reviewed |

Biodegradation by Landfarming On-Site of Petroleum Waste from Refining at Pointe-Noire (Republic of Congo)

Received: 12 September 2023    Accepted: 23 October 2023    Published: 11 November 2023
Views:       Downloads:

Share This Article

Abstract

This work aimed to evaluate the treatment by landfarming ex-situ on site of waste from the oil refining activity in Pointe-Noire. Three types of hydrocarbon-polluted soils were used for this study: Soil 1 (polluted by crude oil by-products), Soil 2 (polluted by crude oil by-products associated with grease) and Soil 3 (polluted by crude oil by-products associated with tank bottom sludge). These soils were treated in the ponds by mixing them with molasses and inoculum in the following proportions: 5400 kg soil, 5.5% molasses and 0.9% inoculum for pond 1 (Soil 1) and 27000 kg soil, 1.1% molasses and 0.185% inoculum for pond 2 (Soil 2) and pond 3 (Soil 3). Total petroleum hydrocarbons (TPH) and trace metal elements (TME) during processing were determined by EPA 3510C + EPA 8015D-2003 and UNI ISO 17294-2-2016, respectively. pH, humidity, temperature, carbon and organic matter were determined by AOAC methods. The results obtained show a decrease in TPH content in Soil 1, Soil 2 and Soil 3, with degradability rates of 67.19, 52.75 and 9.18% respectively. As, Ba, Cd, Co, Cr, Hg and Mo remain below 0.5 mg/kg. Zn levels decrease in Soil 2 (12 to 0.9 mg/kg) and increase in Soil 1 (10 to 15 mg/kg) and Soil 3 (20 to 23 mg/kg). Cu levels increase in Soil 1 (5 to 10 mg/kg) and Soil 2 (12 to 19 mg/kg). In Soil 3, Pb levels dropped from 18 to 12 mg/kg, while Ni levels rose from 3mg/kg to 7mg/kg. Concentrations of these metals (Pb and Ni) in Soil 1 and Soil 2 remained unchanged. pH varied from 4.52 to 8.38, humidity from 2.25 to 22.92%, temperature from 21 to 34°C, air content from 0.04 to 27.71%, carbon from 0.11 to 11.84% and nitrogen between 0.088 and 0.203% in all three soils during treatment. These results show that treatment had a significant impact on TPH.

DOI 10.11648/j.ajep.20231205.12
Published in American Journal of Environmental Protection (Volume 12, Issue 5, October 2023)
Page(s) 138-149
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Biodegradation, Landfarming, Petroleum Waste, ex-situ Treatment, Total Petroleum Hydrocarbons

References
[1] Lebonguy, A. A., Goma-Tchimbakala, J., Miamb, i E. et Keleke, S. (2017). «Isolation and characterization of petroleum product emulsifying Pseudomonas strains from a generating set fuel tank». African Journal of Microbiology Research, vol. 11, N°122, pp. 920-926.
[2] Goma-Tchimbakala, J., Lebonguy, A. A., & Ponguy Soueli, C. R. (2019). Caractérisation des bactéries isolées de deux sols pollues par les hydrocarbures de Brazzaville, CONGO. Annales de l'Université Marien NGOUABI Sciences Techniques, 18, pp. 23-32. www.annalesumng.org.
[3] Nyolo Lonema, J., Koy Kasongo, R., Mawa Tuzingila, R., & Makaly, E. (2021). Bioremédiation des Boues ex-Réservoirs des Raffineries de Pétrole. Congo Sciences: Journal En Ligne de l'ACASTI et Du CEDESURK, 9(1), pp. 32-44. http://www.congosciences.cd..
[4] Pătraşcu, C., Avram, L., Dobre, L., Panaitescu, C., & Popa, M. (2006). Décontamination microbiologique d’un site historiquement pollué avec le petrole brut. Scientific Study & Research, VII (3), pp 531-534.
[5] P. W. Kaboré-Ouédraogo,,. P. W. Savadogo, C. A. T. Ouattara, A. Savadogo et A. S. Traoré, «Etude de la Bio-dépollution de Sols contaminés par les Hydrocarbures au Burkina Faso,» J. Soc. Ouest-Afrique. Chim., vol. 30, pp. 19-28, January 2010.
[6] Sawadogo, A., Otoidobiga, H. C., Nitiema, L. W., Traoré, A. S., & Dianou, D. (2016). «Optimization of Hydrocarbons Biodegradation by Bacterial Strains Isolated from Wastewaters in Ouagadougou, Burkina Faso: Case Study of SAE 40 / 50 Used Oils and Diesel,» Journal of Agricultural Chemistry and Environment, vol. 5, pp. 1-11.
[7] Ouédraogo, W. P., Otoidobiga, C. H., Tidiane, C. A., Ouattara, A. S., & Traoré, A. S. (2020). «Pilot bioremediation of contaminated soils by hydrocarbons, from an electricity production and distribution site in Ouagadougou, Burkina Faso,» Scientific Research and Essays, vol. 14, N°14, pp. 69-77. https://doi.org/10.5897/SRE2020.6688.
[8] USEPA (2003). «Method 8015D: Nonhalogenated Organics Using GC/FID,» Revision 4 June, pp. 1-37.
[9] Soltani M. (2004). «Distribution lipidique et voies métaboliques chez quatre bactéries Gram-négatives hydrocarbonoclastes. Variation en fonction de la source de carbone» Paris, 258 P. https://pastel.archives-ouvertes.fr/tel-00009276
[10] Hadjou, O. et Rabhi S. (2015). «Essai de bioremédiation d’un sol pollué aux hydrocarbures par la bioaugmentation et la biostimulation,» Biologie Animale et végétale, Université Mouloud Mammeri de Tizi Ouzou, 52p, Algerie.
[11] A. Rajaona Rafihavanana, «Contribution au traitement des boues et des sols pollués par des hydrocarbures: Optimisation et approche de modélisation du procédé,» Chimie Minérale et de Chimime Physique, faculté de Science d'Antananarivo, 188 P, 2015.
[12] Mansouri A.,2018. «Approche intégrée de suivi d’un procédé de bioremédiation: Application aux sédiments de la lagune de Bizerte,» Génie des Procédés, Université de Nante en co-tutlle avec l'Université de Carthage, 134 P, Nantes.
[13] Hansen, L. D., Nestler, C., Ringelberg, D. et R. Bajpai (2004). «Extended bioremediation of PAH / PCP contaminated soils from the POPILE wood treatment facility,» Chemosphère, vol. 54, pp. 1481-1493. https://doi.org/10.1016/j.chemosphere.2003.09.046
[14] Hamdi H., Benzarti S., Manusadžianas, L., Aoyama, I. et Jedidi, N. (2007) «Solid-phase bioassays and soil microbial activities to evaluate PAH-spiked soil ecotoxicity after a long-term bioremediation process simulating landfarming,» Chemosphere, vol. 70, N°11, pp. 135-143. https://doi.org/10.1016/j.chemosphere.2007.06.043
[15] Rhbal, H., Souabi, S., Safi, M., Mohamed, T., Arad, M., & Abdelkader, Anouzla Mohamed, H. (2020). «Décontamination des sols pollués par les hydrocarbures,» Scientific Study & Research: Chemistry & Chemical Engineering, Biotechnology, Food Industry, vol. 21, N°11, pp. 1-16.
[16] USEPA (1998). «Method 9071B, n-hexane extractable material (hem) for sludge, sediment, and solid samples,» Revision 2, pp. 1-13.
[17] Goma-tchimbakala, J., Obambi Ngassaï, J. R., Lebonguy, A. A., & Gouolally Tsiba (2020) «Biodégradation des HAP d ’ une Huile usée par des Consortiums de Microorganismes Isolés des sols Pollués de Brazzaville, Congo,» European Journal of Scientific Research, vol. 155, N°14, pp. 378-387.
[18] Sitou, L. (1994). «Les cirques d'érosion dans la région de Pointe-Noire (Congo): étude géomorphologique». Géographie-physique, Université Louis Pasteur (Strasbourg-I), 240P.
[19] Nizinski, J. J., Galat, G., Galat-Luong, A., Dingkuhn, M. et Fabre, D. (2009). «Evapotranspiration réelle et resistance du couvert d'une savane à Loudetia Arundinacea (Bassin du Kouilou, Congo-Brazzaville)». Climatologie, vol. 6, pp. 35-45.
[20] Massengo, A. (1970) «Contribution à l'étude stratigraphique, sédimentologique et mineralogique de serie Plio-pleistocène du bassin côtier du Congo-Brazzaville.,» Université de bordeaux, 159P, 1970.
[21] AOAC (1990), Official Methods of Analysis of the Association of official analytical chemists (AOAC), 15 th éd., vol. 1, H. Kenneth, Éd., 771 P.
[22] D. Baize, Guide des analyse courante en pédologie: Choix-expression-présentation-interprétation, IRA, Éd., Paris, 1988, p. 172.
[23] Piakong, M., & Nur Zaida, Z. (2018). «Effectiveness of Single and Microbial Consortium of Locally Isolated Beneficial Microorganisms (LIBeM) in Bioaugmentation of Oil Sludge Contaminated Soil at Different Concentration Levels: A Laboratory Scale,» Journal of Bioremediation & Biodegradation, vol. 9, N°12, pp. 3-9. https://doi.org/10.4172/2155-6199.1000430
[24] Baize, D. et Paquereau, H. (1997). «Teneurs totales en éléments traces dans les sols agricoles de Seine-et-Marne,» Science du Sol - I. N. R. A. - Orléan, vol. 4, N°12, pp. 77-94.
[25] Baize, D. (2018). Guide des analyses en pédologie, 3e édition éd., Quæ, Éd., Paris, 323 P.
[26] Benyahia, N. et K. Mahdaoui, K. (2012) «La pollution des sols par les hydrocarbures,» Faculté des Science de laNature et de la vie, Université Abderrahmane Mira de Bejaia, 87P, Algerie, 2012.
[27] Koller, E. (2009). Traitement des déchets industriels: Eau-Air-Déchets-Sols-Boues., 2ème édition éd., Dunod, Éd., Paris, 569 P.
[28] Petard, J. (1993). Les méthode d'analyse de sols, Vols. %1 sur %2Tome 1, (5), ORSTOM, Éd., Paris, France, 196P.
[29] USEPA (2007), «Method 9074: Turbidimetric screening method for total recoverable petroleum Hydrocarbons n soil.,» Revisio 0, February, pp. 1-15.
[30] Ros, M., Rodríguez, I., García, C., & Hernández, T. (2010). «Bioresource Technology Microbial communities involved in the bioremediation of an aged recalcitrant hydrocarbon polluted soil by using organic amendments,» Bioresource Technology, vol. 101, N° 118, pp. 6916-6923. https://doi.org/10.1016/j.biortech.2010.03.126
[31] USEPA (2017), «How to evaluate alternative cleanup technologies for Underground Storage Tank Sites: A Guide For Corrective Action Plan Reviewers, landfarming». Chapter V: Lanfarming, Vols. 1 sur 2510-B-17-0, Revision of 1994, p. 31. https://www.epa.gov/sites/production/files/2014-03/documents/tum_ch9.pdf
[32] EshghiI Malayeri, B. (1995). «Décontamination des sols contenant des métaux lourds à l'aide de plantes et de microorganismes,» Faculté des Sciences U. F. R. ENSTIB, Université Henri Poincaré, Nancy 1, 116 P.
[33] Marin, J. A., Hernandez, T., & Garcia, C. Ã. (2005). «Bioremediation of oil refinery sludge by landfarming in semiarid conditions: Influence on soil microbial activity,» Environmental Research 98, vol. 98, pp. 185-195. https://doi.org/10.1016/j.envres.2004.06.005
[34] Huynh, T. M. D. (2009) «Impacts des métaux lourds sur l'interaction plante/ ver de terre/ microflore tellurique». Université PARIS Est: Ecole Doctorale Sience de la vie et de la santé, 169P.
[35] Desaunay, A. (2011) «Etude et modélisation de la biosorption des métaux par les bactéries. Application au transfert du cadmium et du zinc, seuls ou en mélange par Escherichia coli et Cupriavidus metal- lidurans en colonnes de sable d’Hostun»Sciences de la Terre. Université de Grenoble, 249 P. https://tel.archives-ouvertes.fr/tel-00716409
[36] Belouchrani, A. S., Abdi, N., Lounici, H., Mameri, N. et B. Mouhouche (2013). «Contribution à l'étude de l'effet des micro-organismes dans la bioremediation d ’ un sol pollué par le zinc Contribution à l'étude de l'effet des micro-organismes dans la bioremediation d’un sol pollué par le zinc,» chez The 4th International Congress Water, Waste & Environment (EDE4), December 18-20, Agadir, Morocco, pp. 74-77.
[37] Bouzabata S. et Djamaa, F. (2015) «Influence des Métaux lourds sur la croissance des souches bactériennes isolées à partir des nodules de Vicia faba et Pisum sativum,» Faculté des Sciences de la Nature et de la Vie, Université des Frères Mentouri Constantine, 85P.
[38] Jacob, C. (2001). «Etude des interactions entre métaux lourds et champignons ectomycorhiziens: mise en évidence de gènes impliqués dans la réponse au cadmium de ” Paxillus involutus ”,» Sylviculture, foresterie. Université Henri Poincaré - Nancy 1, 253 P.
[39] Hogan-Itam, D. (2020) «The Use of Biochar for Bioremediation of Crude Oil/Hydrocarbon Polluted Soils (Vol 1) – Bioremediation of Polluted Soils, Studies, Results and Possibilities,» SSRN Electronic Journal, vol. 1, pp. 1-14. https://doi.org/10.2139/ssrn.3707749
[40] Maynaud, G. (2012). «Adaptation aux métaux lourds de populations de rhizobia impliquées dans la phytostabilisation de déblais miniers:,» Microbiologie, Parasitologie, Université Montpellier II Sciences et Technique du Languedo, 284P.
[41] Abatenh, E., Gizaw, B., Tsegaye, Z., & Wassie, M. (2017). The Role of Microorganisms in Bioremediation-A Review. Open J Environ Biol, 2(1), 38-46. https://doi.org/10.17352/ojeb.000007.
[42] Mlitan, A. B., Alajtal, A. I., Alsadawy, A. M., & Al, E. T. (2013). Toxicity of Heavy Metals and Microbial Analysis of Soil Samples Collected from the Area around Zliten Cement Factory. Open Journal of Air Pollution, 2 pp. 25-28. https://doi.org/http://dx.doi.org/10.4236/ojap.2013.21004
[43] Ledin, M. (2000). «Accumulation of metals by microorganisms — processes and importance for soil systems» Earth-Science Reviews, vol. 51, N°11-4, pp. 1-31.
[44] Dommergues, Y. (1977). Biologie des sols, 2ème éd., Paris, 128. P.
[45] Berthelin, J. (1998). «Les micro-organismes dans la transformation des minéraux: incidence sur la formation, le fonctionnement et évolution des sols». In P. Stengel & S. Gelin (Coord), Sol: interface fragile, INRA, Paris, pp. 83-91.
[46] Coyne, M. S. (1999). Soil microbiology: An Exploratory Approach. ITP (ed.). Delmar, 462P. http:/www.delmar.com.
[47] Chibuike, G. U., & Obiora, C. S. (2014). «Heavy Metal Polluted Soils: Effect on Plants and Bioremediation Methods». Applied and Environmental Soil Science, 2014, 1-12. https://doi.org/10.1155/2014/752708.
[48] Cambier, P., & Mench, M. (1998). «Soil contamination by heavy metals and other trace elements. In S. Stengel, P. Gelin (Coord), Sol: interface fragile, INRA, Paris, pp. 161-171.
[49] Bouderhem, A. (2011). «Utlisation des souches bactériennes tellurique autochtones dans la biodétection et la bioremédiationdes sols pollués par les hydrocarbures». Sciences de la Nature et de la Vie, Kasdi Merbah-Ouargla, Faculté des Science et de la vie et Science de la terre et de l'Univers,91P. http://www.indianjournals.com/ijor.aspx?target=ijor:ijmr1&volume=2&issue=4&article=012
[50] Ugboma, C. J., Sampson, T., & Mbonu, N. E. (2021). «Bioremediation of heavy metals from artisanal crude oil refinery (Kpo-Fire) impacted soil using Bacillus flexus and Pseudomonas aeruginosa in Ngie Community, Degema Local Government Area, Rivers State, Nigeria». Journal of Applied Sciences and Environmental Management, 24 (12), pp. 2049-2054. https://doi.org/10.4314/jasem.v24i12.6
[51] Rasoanarivony, A. M. (2016). «Bioremédiation des sols pollues l’environnement par les hydrocarbures aromatiques polycycliques (HAP) étude de cas de la région de Tsimiroro,» Chimie, Science et technologie, Université d'Antananarivo, 96 P.
[52] Lukić, B., Panico, A., Huguenot, D., Fabbricino, M., van Hullebusch, E. D., & Esposito, G. (2017). «A review on the efficiency of landfarming integrated with composting as a soil remediation treatment». Environmental Technology Reviews, vol. 6, N°11, pp. 94-116. https://doi.org/10.1080/21622515.2017.1310310
[53] Or, D., Smets, B. F., Wraith, J. M., Dechesne, A., & Friedman, S. P. (2007). «Physical constraints affecting bacterial habitats and activity in unsaturated porous media - a review,» Advances in Water Resources, vol. 30, N° 16-7, pp. 1505-1527.
[54] Håkansson, I., & Lipiec, J. (2000). «A review of the usefulness of relative bulk density values in studies of soil structure and compaction,» Soil and Tillage Research, vol. 53, N° 12, pp. 71-85. https://doi.org/10.1016/S0167-1987(99)00095-1
[55] Lee, S. H., Oh, B. I. et Kim, J. G. (2008). «Effect of various amendments on heavy mineral oil bioremediation and soil microbial activity,» Bioresource Technology, vol. 99, n° 17, pp. 2578-2587. https://doi.org/10.1016/j.biortech.2007.04.039
[56] Macaulay B. M. et Rees, D. (2014). «Bioremdiation of oil spills: A reviexof challenges for research advancement». Annals of Environmental Science, vol. 8, pp. 9-37.
[57] Lukic, B. (2016). «Composting of organic waste for enhanced bioremediation of PAHs contaminated soils». Materials. Université Paris-Est, 208P. https://tel.archives-ouvertes.fr/tel-01735701v2
[58] Zairi, M., Rouis, M. J.et Shabou, R. «Étude Expérimentale De La Biorestauration Des Sols Souillés Par Les Hydrocarbures,» Environnement, Ingénierie & Développement, vol. 3 ème trim, N° 127, pp. 22-29. https://doi.org/10.4267/dechets-sciences-techniques.2384
[59] Roth, E., Fabre, B. et Gunkel, P. (2005). «Environnement, Ingénierie & Développement». vol. 2èm, N°138, pp. 8-14. https://doi.org/10.4267/dechets-sciences-techniques.1895.
[60] Mohamed, N. et Abdelmajid, H. (2016). «Les techniques de dépollution des sols contaminés par les métaux lourds: une revue». Maghrebian Journal of Pure and Applied Science, vol. 2, n° 12, pp. 2458-715.
[61] Gautier C. (2007). «Biodégradation des Hydrocarbures en milieu poreux insaturé.,» Physique-Chimie, Université De PAU ET Des PAYS De L'ADOUR: Institut Français Du Pétrole, 270P.
[62] Wannoussa, W., Hiligsmann, S., Tasseroul, L., Lambert, S. D., Heinrichs, B., Masy, T., Weekers, F., Lavigne, B., Delvigne, F., Jacques, P. et Thonart, P. (2015). «Amélioration de la biodégradation du biphényle par Rhodococcus erythropolis t902.1 en présence de Fe2O3 et de nanoparticules de fer encapsulées dans un xérogel de silice,» Déchets Sciences et Techniques, n° 169, pp. 4-12. https://doi.org/10.4267/dechets-sciences-techniques.3210.
[63] Malika, A. et Roumaissa, A (2018). «Essai de bioremédiation de sol pollué au gasoil par des bactéries hydrocarbonoclastes Essai de bioremédiation de sol pollué au gasoil par des bactéries hydrocarbonoclastes,» Microbiologie, Université des frères mentouri constantine: Faculté des sciences de la nature et de la vie, 82P.
[64] Petavy, F., Ruban, V., Conil, P., Viau, J. Y. et Auriol, J. C. (2009).«Two treatment methods for stormwater sediments – pilot plant and landfarming – and reuse of the treated sediments in civil engineering». Environmental Technology, vol. 30, N°18, pp. 37-41, 2009. https://doi.org/10.1080/09593330902990113
[65] Mossman, J. R. en collaboration avec Koch-Mathian J. Y. (2001). «Gestion des sites (potentiellement) pollués et évaluation simplifiée des risques». BRGM/RP-51216-FR, 44 p., 2 ann.
[66] Wang, S., Kuo, Y., Hong, A., Chang, Y., & Kao, C. (2016). «Chemosphere Bioremediation of diesel and lubricant oil-contaminated soils using enhanced landfarming system». Chemosphere, vol. 164, pp. 558-567. https://doi.org/10.1016/j.chemosphere.2016.08.128
[67] Couto, M. N. P. F. S., Monteiro, E., & Vasconcelos, M. T. S. D. (2010). «Mesocosm trials of bioremediation of contaminated soil of a petroleum refinery: comparison of natural attenuation, biostimulation and bioaugmentation,» Environ Sci Pollut Res (2010), vol. 17, pp. 1339-1346.
[68] Guarino, C., Spada, V. et Sciarrillo, R. (2017). «Assessment of three approaches of bioremediation (Natural Attenuation, Landfarming and Bioagumentation – Assistited Landfarming) for a petroleum hydrocarbons contaminated soil». Chemosphere, pp. 1-9. https://doi.org/10.1007/s11356-010-0318-y
Cite This Article
  • APA Style

    Okoletimou, V. V. M., Nzila, J. D. D., Watha-Ndoudy, N., Lebonguy, A. A. (2023). Biodegradation by Landfarming On-Site of Petroleum Waste from Refining at Pointe-Noire (Republic of Congo). American Journal of Environmental Protection, 12(5), 138-149. https://doi.org/10.11648/j.ajep.20231205.12

    Copy | Download

    ACS Style

    Okoletimou, V. V. M.; Nzila, J. D. D.; Watha-Ndoudy, N.; Lebonguy, A. A. Biodegradation by Landfarming On-Site of Petroleum Waste from Refining at Pointe-Noire (Republic of Congo). Am. J. Environ. Prot. 2023, 12(5), 138-149. doi: 10.11648/j.ajep.20231205.12

    Copy | Download

    AMA Style

    Okoletimou VVM, Nzila JDD, Watha-Ndoudy N, Lebonguy AA. Biodegradation by Landfarming On-Site of Petroleum Waste from Refining at Pointe-Noire (Republic of Congo). Am J Environ Prot. 2023;12(5):138-149. doi: 10.11648/j.ajep.20231205.12

    Copy | Download

  • @article{10.11648/j.ajep.20231205.12,
      author = {Vitaline Vanessa Morabo Okoletimou and Jean de Dieu Nzila and Noël Watha-Ndoudy and Augustin Aimé Lebonguy},
      title = {Biodegradation by Landfarming On-Site of Petroleum Waste from Refining at Pointe-Noire (Republic of Congo)},
      journal = {American Journal of Environmental Protection},
      volume = {12},
      number = {5},
      pages = {138-149},
      doi = {10.11648/j.ajep.20231205.12},
      url = {https://doi.org/10.11648/j.ajep.20231205.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajep.20231205.12},
      abstract = {This work aimed to evaluate the treatment by landfarming ex-situ on site of waste from the oil refining activity in Pointe-Noire. Three types of hydrocarbon-polluted soils were used for this study: Soil 1 (polluted by crude oil by-products), Soil 2 (polluted by crude oil by-products associated with grease) and Soil 3 (polluted by crude oil by-products associated with tank bottom sludge). These soils were treated in the ponds by mixing them with molasses and inoculum in the following proportions: 5400 kg soil, 5.5% molasses and 0.9% inoculum for pond 1 (Soil 1) and 27000 kg soil, 1.1% molasses and 0.185% inoculum for pond 2 (Soil 2) and pond 3 (Soil 3). Total petroleum hydrocarbons (TPH) and trace metal elements (TME) during processing were determined by EPA 3510C + EPA 8015D-2003 and UNI ISO 17294-2-2016, respectively. pH, humidity, temperature, carbon and organic matter were determined by AOAC methods. The results obtained show a decrease in TPH content in Soil 1, Soil 2 and Soil 3, with degradability rates of 67.19, 52.75 and 9.18% respectively. As, Ba, Cd, Co, Cr, Hg and Mo remain below 0.5 mg/kg. Zn levels decrease in Soil 2 (12 to 0.9 mg/kg) and increase in Soil 1 (10 to 15 mg/kg) and Soil 3 (20 to 23 mg/kg). Cu levels increase in Soil 1 (5 to 10 mg/kg) and Soil 2 (12 to 19 mg/kg). In Soil 3, Pb levels dropped from 18 to 12 mg/kg, while Ni levels rose from 3mg/kg to 7mg/kg. Concentrations of these metals (Pb and Ni) in Soil 1 and Soil 2 remained unchanged. pH varied from 4.52 to 8.38, humidity from 2.25 to 22.92%, temperature from 21 to 34°C, air content from 0.04 to 27.71%, carbon from 0.11 to 11.84% and nitrogen between 0.088 and 0.203% in all three soils during treatment. These results show that treatment had a significant impact on TPH.
    },
     year = {2023}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Biodegradation by Landfarming On-Site of Petroleum Waste from Refining at Pointe-Noire (Republic of Congo)
    AU  - Vitaline Vanessa Morabo Okoletimou
    AU  - Jean de Dieu Nzila
    AU  - Noël Watha-Ndoudy
    AU  - Augustin Aimé Lebonguy
    Y1  - 2023/11/11
    PY  - 2023
    N1  - https://doi.org/10.11648/j.ajep.20231205.12
    DO  - 10.11648/j.ajep.20231205.12
    T2  - American Journal of Environmental Protection
    JF  - American Journal of Environmental Protection
    JO  - American Journal of Environmental Protection
    SP  - 138
    EP  - 149
    PB  - Science Publishing Group
    SN  - 2328-5699
    UR  - https://doi.org/10.11648/j.ajep.20231205.12
    AB  - This work aimed to evaluate the treatment by landfarming ex-situ on site of waste from the oil refining activity in Pointe-Noire. Three types of hydrocarbon-polluted soils were used for this study: Soil 1 (polluted by crude oil by-products), Soil 2 (polluted by crude oil by-products associated with grease) and Soil 3 (polluted by crude oil by-products associated with tank bottom sludge). These soils were treated in the ponds by mixing them with molasses and inoculum in the following proportions: 5400 kg soil, 5.5% molasses and 0.9% inoculum for pond 1 (Soil 1) and 27000 kg soil, 1.1% molasses and 0.185% inoculum for pond 2 (Soil 2) and pond 3 (Soil 3). Total petroleum hydrocarbons (TPH) and trace metal elements (TME) during processing were determined by EPA 3510C + EPA 8015D-2003 and UNI ISO 17294-2-2016, respectively. pH, humidity, temperature, carbon and organic matter were determined by AOAC methods. The results obtained show a decrease in TPH content in Soil 1, Soil 2 and Soil 3, with degradability rates of 67.19, 52.75 and 9.18% respectively. As, Ba, Cd, Co, Cr, Hg and Mo remain below 0.5 mg/kg. Zn levels decrease in Soil 2 (12 to 0.9 mg/kg) and increase in Soil 1 (10 to 15 mg/kg) and Soil 3 (20 to 23 mg/kg). Cu levels increase in Soil 1 (5 to 10 mg/kg) and Soil 2 (12 to 19 mg/kg). In Soil 3, Pb levels dropped from 18 to 12 mg/kg, while Ni levels rose from 3mg/kg to 7mg/kg. Concentrations of these metals (Pb and Ni) in Soil 1 and Soil 2 remained unchanged. pH varied from 4.52 to 8.38, humidity from 2.25 to 22.92%, temperature from 21 to 34°C, air content from 0.04 to 27.71%, carbon from 0.11 to 11.84% and nitrogen between 0.088 and 0.203% in all three soils during treatment. These results show that treatment had a significant impact on TPH.
    
    VL  - 12
    IS  - 5
    ER  - 

    Copy | Download

Author Information
  • Industrial Process Engineering Laboratory, National Higher Polytechnic School, Marien Ngouabi University, Brazzaville, Congo

  • Geosciences and Environment Research Laboratory (LARGEN), Higher Teachers’ College (ENS), Marien Ngouabi University, Brazzaville, Congo

  • Geosciences and Environment Research Laboratory (LARGEN), Higher Teachers’ College (ENS), Marien Ngouabi University, Brazzaville, Congo; Geosciences Laboratory, Faculty of Sciences and Technology, Marien Ngouabi University, Brazzaville, Congo

  • National Institute of Exact and Natural Sciences, Brazzaville, Congo

  • Sections