Metal-organic frameworks (MOFs) are an interesting class of materials consisting of central metal ions and organic binders. These are porous crystalline materials in which different organic groups are combined with metal that has been cemented into place to provide a rigid and porous geometry. Green Metal Organic Frameworks (GMOFs) are a novel class of porous materials with a number of distinctive properties, including uniform and tunable pore size, large surface areas, adaptable pore structure, high porosities, acceptable thermal and chemical stabilities, simple production, and structural diversity. In order to alter the physicochemical characteristics and gas affinities of MOFs, ionic liquids (ILs) have recently been inserted as cavity occupants into the pores of metal organic frameworks (MOFs). Recent research has demonstrated that IL/MOF composites outperform pristine MOFs in a variety of applications, including gas storage, membrane-based gas separation, adsorption, catalysis, and ionic conductivity. Ionic liquid-modified MOFs (IL/MOFs) composite materials benefit from the high stability and versatile physical and chemical properties of ILs while retaining the structural characteristics of MOFs. Scholars are particularly interested in them because of their vast potential for usage in the domains of isolation and investigation. In this review, we provide a comprehensive overview of the applications of IL/MOF composites and talk about the latest advancements in their synthesis. The benefits and drawbacks of employing IL/MOF composites in diverse applications were investigated in order to ascertain the future directions in this field.
Published in | American Journal of Physical Chemistry (Volume 14, Issue 2) |
DOI | 10.11648/j.ajpc.20251402.13 |
Page(s) | 33-50 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2025. Published by Science Publishing Group |
Metal Organic Frameworks, Ionic Liquid, Composite Materials, Adsorption, Gas separation
[1] | Zhuang J, Kuo C-H, Chou L-Y, Liu D-Y, Weerapana E. and Tsung C-K. Optimized Metal-Organic-Framework Nanospheres for Drug Delivery: Evaluation of Small-Molecule Encapsulation. ACS Nano. 2014; 8(3): 2812–2819. |
[2] | Horcajada P, Gref R, Baati T, Allan P. K, Maurin G, Couvreur P, Ferey G, Morris R. E. and Serre C. Metal–Organic Frameworks in Biomedicine. Chemical Reviews. 2012; 112(2): 1232–1268. |
[3] | Babarao R. and Jiang J. Unraveling the energetics and dynamics of ibuprofen in mesoporous metal-organic frameworks. Journal of physical chemistry C. 2009; 113(42): 18287-18291. |
[4] | Lee J, Farha O. K, Roberts J, Scheidt K. A, Nguyen S. T. and Joseph T. Metal-organic framework materials as catalysts. Hupp. Chemical Society Reviews, 2009; 38: 1450–1459. |
[5] | Horike S, Shimomura S. and Kitagawa S. Soft porous crystals. Nature Chemistry. 2009; 1(9): 695–704. |
[6] | Kitagawa S. and Matsuda R. Chemistry of coordination space of porous coordination polymers. Coordination Chemistry Reviews. 2007; 251: 2490–2509. |
[7] | Trujillo-Rodriguez M. J, He N, Varona M, Emaus M. V, Souza I. D. and Anderson J. L. Advances of Ionic Liquids in Analytical Chemistry. Anal. Chem. 2019; 91(1): 505‒531. |
[8] | Guan X. Y, Ma Y. C, Li H, Yusran Y, Xue M, Fang Q. R, Yan Y. S, Valtchev V. and Qiu S. L. Fast, Ambient Temperature and Pressure Ionothermal Synthesis of Three-Dimensional Covalent Organic Frameworks. J. Am. Chem. Soc. 2018; 140(13): 4494‒4498. |
[9] | Ding M. L. and Jiang H. L. Incorporation of Imidazolium-Based Poly(ionic liquid)s into a Metal–Organic Framework for CO2 Capture and Conversion. ACS Catal. 2018; 8(4): 3194‒3201. |
[10] | Ni R, Wang Y, Wei X, Chen J, Xu P, Xu W. and Meng J. Ionic liquid modified molybdenum disulfide and reduced graphene oxide magnetic nanocomposite for the magnetic separation of dye from aqueous solution. J. Anal. Chim. Acta. 2019; 1054: 47‒58. |
[11] | He L, Cui W, Wang Y, Zhao W, Xiang G, Jiang X, Mao P, He J. and Zhang S. Polymeric ionic liquid based on magnetic materials fabricated through layer-by-layer assembly as adsorbents for extraction of pesticides. J. Chromatogr. A. 2017; 1522: 9‒15. |
[12] | Jia L, Yang J, Zhao W. and Jing X. Air-assisted ionic liquid dispersive liquid–liquid microextraction based on solidification of the aqueous phase for the determination of triazole fungicides in water samples by high-performance liquid chromatography. RSC Adv. 2019; 9(63): 36664‒36669. |
[13] | Maiyong Z. Ionic-liquid/metal–organic-framework composites: synthesis and emerging sustainable applications. Inorg. Chem. Front., 2025; 12: 39-84. |
[14] | Urgoiti-Rodriguez M, Vaquero-Vílchez S, Mirandona-Olaeta A, Fernández R, Goikolea E, Costa C. M, Lanceros-Mendez S, Fidalgo-Marijuan A. and Ruiz de Larramendi I. Exploring ionic liquid-laden metal-organic framework composite materials as hybrid electrolytes in metal (ion) batteries. Front. Chem. 2022; 10: 995063. |
[15] | Morris R. E. Ionothermal synthesis—ionic liquids as functional solvents in the preparation of crystalline materials. Chem. Commun., 2009; 40(21): 2990–2998. |
[16] | Ban Y, Li Z, Li Y, Peng Y, Jin H, Jiao W, Guo A, Wang P, Yang Q, Zhong C. and Yang W. Confinement of Ionic Liquids in Nanocages: Tailoring the Molecular Sieving Properties of ZIF-8 for Membrane-Based CO2 Capture. Angew. Chem. Int. Ed. 2015; 54(51): 15483‒15487. |
[17] | Jin K, Huang X, Pang L, Li J, Appel A. and Wherland S. [Cu(i)(bpp)]BF4: the first extended coordination network prepared solvothermally in an ionic liquidsolvent. Chem. Commun. 2002; 23: 2872‒2873. |
[18] | Parnham E. R. and Morris R. E. Ionothermal Synthesis of Zeolites, Metal–Organic Frameworks, and Inorganic–Organic Hybrids. Acc. Chem. Res., 2007; 40(10): 1005–1013. |
[19] | Fujie K. and Kitagawa H. Ionic liquid transported into metal-organic frameworks. Coord. Chem. Rev., 2016; 307: 382‒390. |
[20] | Hassan H. M. A, Betiha M. A, Mohamed S. K, El-Sharkawy E. A. and Ahmed E. A. Stable and recyclable MIL-101(Cr)–Ionic liquid-based hybrid nanomaterials as heterogeneous catalyst. J. Mol. Liq. 2017; 236: 385‒394. |
[21] | Wang J, Xie D, Zhang Z, Yang Q, Xing H, Yang Y, Ren Q. and Bao Z. Efficient adsorption separation of acetylene and ethylene via supported ionic liquid on metal-organic framework. Alche. J. 2017; 63(6): 2165‒2175. |
[22] | Li H. Tuo L, Yang K. Yeong H-K, Dai Y, He G. and Zhao W. Simultaneous enhancement of mechanical properties and CO2 selectivity of ZIF-8 mixed matrix membranes: Interfacial toughening effect of ionic liquid. J. Memb. Sci. 2016; 511: 130–142. |
[23] | Kinik F. P, nas C, Balci V, Koyuturk B, Uzum A. and Keskin S. [BMIM][PF6] Incorporation Doubles CO2 Selectivity of ZIF-8: Elucidation of Interactions and Their Consequences on Performance. ACS Appl. Mater. Interfaces, 2016; 8(45): 30992‒31005. |
[24] | Sezginel K. B, Keskin S. and Uzun A. Tuning the Gas Separation Performance of CuBTC by Ionic Liquid Incorporation. Langmuir. 2016; 32(4): 1139‒1147. |
[25] | Nasrollahpour A, Moradi S. E. and Baniamerian M. J. Vortex-Assisted Dispersive Solid-Phase Microextraction Using Ionic Liquid-Modified Metal-Organic Frameworks of PAHs from Environmental Water, Vegetable, and Fruit Juice Samples. Food Anal. Methods. 2017; 10(8): 2815‒2826. |
[26] | Kinik F. P, Uzun A. and Keskin S. Ionic Liquid/Metal–Organic Framework Composites: From Synthesis to Applications. Chem Sus Chem, 2017; 10(14): 2842–2863. |
[27] | Khan N. A, Jhung S. H. and Bhadra B. N. Heteropoly acid-loaded ionic liquid@metal-organic frameworks: Effective and reusable adsorbents for the desulfurization of a liquid model fuel. Chem. Eng. J. 2018; 334: 2215‒2221. |
[28] | Chen L-H, Wu B-B, Zhao H-X, Long L-S. and Zheng L-S. High temperature ionic conduction mediated by ionic liquid incorporated within the metal-organic framework UiO-67(Zr). Inorg Chem Commun. 2017; 81: 1–4. |
[29] | Chen H, Han S. Y, Liu R. H, Chen T. F, Bi K. L, Liang J. B, Deng Y. H. and Wan C. Q. High conductive, long-term durable, anhydrous proton conductive solid-state electrolyte based on a metal-organic framework impregnated with binary ionic liquids: Synthesis, characteristic and effect of anion. J Power Sources. 2018; 376: 168–176. |
[30] | Sun X. L. Deng W-H, Chen H, Han H-L, Taylor J. M, Wan C-Q. and Xu G. A Metal–Organic Framework Impregnated with a Binary Ionic Liquid for Safe Proton Conduction above 100 °C. Chem. A Eur. J. 2017; 23(6): 1248–1252. |
[31] | Deiko G. S, Isaeva V. I. and Kustov L. M. New Molecular Sieve Materials: Composites Based on Metal–Organic Frameworks and Ionic Liquids. Pet. Chem. 2019; 59(8): 770–787. |
[32] | Fujie K, Ikeda R, Otsubo K, Yamada T. and Kitagawa H. Lithium Ion Diffusion in a Metal-Organic Framework Mediated by an Ionic Liquid. Chem. Mater. 2015; 27(21): 7355–7361. |
[33] | Fujie K, Otsubo K, Ikeda R, Yamada T. and Kitagawa H. Low temperature ionic conductor: ionic liquid incorporated within a metal-organic framework. Chem. Sci. 2015; 6(7): 4306–4310. |
[34] | Aijaz A, Akita T, Yang H. and Xu Q. From ionic-liquid@metal–organic framework composites to heteroatom-decorated large-surface area carbons: superior CO2 and H2 uptake. Chem Commun. 2014; 50: 6498–6501. |
[35] | Dhumal N. R, Singh M. P, Anderson J. A, Kiefer J. and Kim H. J. Molecular Interactions of a Cu-Based Metal–Organic Framework with a Confined Imidazolium-Based Ionic Liquid: A Combined Density Functional Theory and Experimental Vibrational Spectroscopy Study. J. Phys. Chem. C. 2016; 120(6): 3295–3304. |
[36] | Koyuturk B, Altintas C, Kinik F. P, Keskin S. and Uzun A. Improving Gas Separation Performance of ZIF-8 by [BMIM][BF4] Incorporation: Interactions and Their Consequences on Performance. J. Phys. Chem. C. 2017; 121(19): 10370–10381. |
[37] | Ma J, Ying Y, Guo X, Huang H, Liu D. and Zhong C. Fabrication of mixed-matrix membrane containing metal-organic framework composite with task-specific ionic liquid for efficient CO2 separation. J. Mater. Chem. A. 2016; 4(19): 7281–7288. |
[38] | Luo Q. X, Song X. D, Ji M, Park S. E, Hao C. and Li Y. Q. Molecular size- and shape-selective Knoevenagel condensation over microporous Cu3(BTC)2 immobilized amino-functionalized basic ionic liquid catalyst. Appl Catal A Gen. 2014b; 478: 81–90. |
[39] | Hui W, Chen C, Wu Z. W, Que Y. G, Feng Y, Wang W, Wang L, Guan G. F. and Liu X. Q. Encapsulation of Heteropolyanion-Based Ionic Liquid within the Metal–Organic Framework MIL-100(Fe) for Biodiesel Production. ChemCatChem, 2015; 7: 441–449. |
[40] | Li Z, Wang W, Chen Y, Xiong C, He G, Cao Y, Wu H, Guiver M. D. and Z. Jiang Z. Constructing efficient ion nanochannels in alkaline anion exchange membranes by the in situ assembly of a poly(ionic liquid) in metal–organic frameworks. J. Mater. Chem. A. 2016; 4(6): 2340–2348. |
[41] | Khan N. A, Hasan Z. and Jhung S. H. Ionic Liquids Supported on Metal-Organic Frameworks: Remarkable Adsorbents for Adsorptive Desulfurization. Chem. A Eur. J. 2014; 20(2): 376–380. |
[42] | Luo Q. X, An B. W, Ji M, Park S. E, Hao C. and Li Y. Q. Metal–organic frameworks HKUST-1 as porous matrix for encapsulation of basic ionic liquid catalyst: effect of chemical behaviour of ionic liquid in solvent. J Porous Mater. 2014a; 22: 247–259. |
[43] | Abednatanzi S, Leus K, Derakhshandeh P. G, Nahra F, keukeleere K. D, Hecke K. V, Driessche I. V, Abbasi A, Nolan S. P. and Voort P. V. D. POM@IL-MOFs – inclusion of POMs in ionic liquid modified MOFs to produce recyclable oxidation catalysts. Catal. Sci. Technol. 2017; 7(7): 1478–1487. |
[44] | Khan N. A, Hasan Z. and Jhung S. H. Ionic liquid@MIL-101 prepared via the ship-in-bottle technique: remarkable adsorbents for the removal of benzothiophene from liquid fuel. Chem. Commun. 2016; 52(12): 2561–2564. |
[45] | Luo Q. X, Ji M, Lu M. H, Hao C, Qiu J. S. and Li Y. Q. Organic electron-rich N-heterocyclic compound as a chemical bridge: building a Brönsted acidic ionic liquid confined in MIL-101 nanocages. J. Mater. Chem. A. 2013; 1(22): 6530–6534. |
[46] | Liang R, Jing F, Shen L, Qin N. and Wu L. M@MIL-100(Fe) (M = Au, Pd, Pt) nanocomposites fabricated by a facile photodeposition process: Efficient visible-light photocatalysts for redox reactions in water. Nano Res. 2015; 8: 3237–3249. |
[47] | Qin J, Wang S. and Wang X. Visible-light reduction CO2 with dodecahedral zeolitic imidazolate framework ZIF-67 as an efficient co-catalyst. Appl. Catal. B Environ. 2017; 209: 476–482. |
[48] | Holland T. J. B, and Redfern S. A. T. Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineralogical Magazine, 1997; 61: 65-77. |
[49] | West A. R. John Wiley & Sons Ltd.: Hoboken, NJ, USA, 1987. Solid State Chemistry and Its Applications. ISBN: 978-1-119-94294-8. |
[50] | Burtch N. C, Jasuja H. and Walton K. S. Water Stability and Adsorption in Metal–Organic Frameworks. Chem. Rev. 2014; 114(20): 10575–10612. |
[51] | Lee M. A, Skadron G. and Fisk L. A. Acceleration of energetic ions at the Earth’s bow shock. Geophysical Research Letters, 1981; 8. |
[52] | Thommes M. Physical Adsorption Characterization of Nanoporous Materials. Chemie-Ingenieur-Technik. 2010; 82(7): 1059–1073. |
[53] | Thommes M, Kaneko K, Neimark A. V, Olivier J. P, Rodriguez-Reinoso F, Rouquerol J. and Sing K. S. W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015; 87: 1051–1069. |
[54] | Chung Y. G, Camp J, Haranczyk M, Sikora B. J, Bury W, Krungleviciute V, Farha O. K, Sholl D. S. and Snurr R. Q. Computation-Ready, Experimental Metal–Organic Frameworks: A Tool To Enable High-Throughput Screening of Nanoporous Crystals. Chem. Mater. 2014; 26(21): 6185–6192. |
[55] | Mondloch J. E, Katz M. J, Planas N, Semrouni D, Gagliardi L, Hupp J. T. and Farha O. K. Are Zr6-based MOFs water stable? Linker hydrolysis vs. capillary-force-driven channel collapse. Chem. Commun. 2014; 50: 8944–8946. |
[56] | Brunauer S, Emmett P. H. and Teller E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60(2), 309–319. |
[57] | Howarth A. J, Peters A. W, Vermeulen N. A, Wang T. C, Hupp J. T. and Farha O. K. Best Practices for the Synthesis, Activation, and Characterization of Metal–Organic Frameworks. Chem. Mater. 2017; 29(1): 26–39. |
[58] | Storck S, Bretinger H. and Maier W. F. Characterization of micro- and mesoporous solids by physisorption methods and pore-size analysis. Appl. Catal. A Gen. 1998; 174: 137– 146. |
[59] | Sing K. S. W. Characterization of porous materials: past, present and future. Colloids Surf. A Physicochem. Eng. Asp. 2004; 241: 3–7. |
[60] | Wu Z. Huang X, Zheng H, Wang P, Hai G, Dong W. and Wang G. Aromatic heterocycle-grafted NH2-MIL-125(Ti) via conjugated linker with enhanced photocatalytic activity for selective oxidation of alcohols under visible light. Appl. Catal. B Environ. 2018; 224: 479–487. |
[61] | Gao G, Nie L, Yang S, Jin P, Chen R, Ding D, Wang X. C, Wang W, Wu K. and Zhang Q. Well-defined strategy for development of adsorbent using metal organic frameworks (MOF) template for high performance removal of hexavalent chromium. Appl. Surf. Sci. 2018; 457: 1208–1217. |
[62] | Fassel V. A. and Kniseley R. N. Inductively coupled plasma. Optical emission spectroscopy. Anal. Chem. 1974; 46(13): 1110A–1120A. |
[63] | Nehra M, Dilbaghi N. N, Singhal N. K, Hassan A. A, Kim K. H. and Kumar S. Metal organic frameworks MIL-100(Fe) as an efficient adsorptive material for phosphate management. Environ. Res. 2019; 169: 229–236. |
[64] | Luz I, Soukri M. and Lail M. Transformation of single MOF nanocrystals into single nanostructured catalysts within mesoporous supports: a platform for pioneer fluidized-nanoreactor hydrogen carriers. Chem. Commun. 2018; 54: 8462–8465. |
[65] | Sing K. The use of nitrogen adsorption for the characterisation of porous materials. Colloids Surf. A Physicochem. Eng. Asp. 2001; 187–188: 3–9. |
[66] | Horiuchi Y, Toyao T, Saito M, Mochizuki K, Iwata M, Higashimura H, Anpo M. and Matsuoka M. Visible-Light-Promoted Photocatalytic Hydrogen Production by Using an Amino-Functionalized Ti(IV) Metal–Organic Framework. J. Phys. Chem. C 2012; 116(39): 20848–20853. |
[67] | Tauc J. Absorption edge and internal electric fields in amorphous semiconductors. Mater. Res. Bull. 1970; 5(8): 721–729. |
[68] | Tianhao Y, Qiong C, Guoping L, Yinge B, Xiaochun Z, Xiangping Z. and Lei L. Mechanisms behind high CO2/CH4 selectivity using ZIF-8 metal organic frameworks with encapsulated ionic liquids: a computational study, 2021; arXiv: 2101: 11229 [physics.chem-ph]. |
[69] | Nozari V, Uzun A and Keskin S. Toward Rational Design of Ionic Liquid/Metal–Organic Framework Composites: Effects of Interionic Interaction Energy, ACS Omega. 2017; 2(10): 6613–6618. |
[70] | Majid M. F, Mohd Zaid H. F, Kait C. F, Ahmad A. and Jumbri K. Ionic Liquid@Metal-Organic Framework as a Solid Electrolyte in a Lithium-Ion Battery: Current Performance and Perspective at Molecular Level. Nanomaterials. 2022; 12(7): 1076. |
[71] | Khan A, Qyyum M. A, Saulat H. Ahmad R, Peng X. and Lee M. Metal–organic frameworks for biogas upgrading: Recent advancements, challenges, and future recommendations. Appl. Mater. Today. 2021; 22: 100925. |
[72] | Zeeshan M, Keskin S. and Uzun A. Enhancing CO2/CH4 and CO2/N2 separation performances of ZIF-8 by post-synthesis modification with [BMIM][SCN]. Polyhedron, 2018; 155: 485–492. |
[73] | Ma D, Li B, Liu K, Zhang X, Zou W, Yang Y, Li G, Shi Z. and Feng S. Bifunctional MOF heterogeneous catalysts based on the synergy of dual functional sites for efficient conversion of CO2 under mild and co-catalyst free conditions. J. Mater. Chem. A. 2015; 3(46): 23136–23142. |
[74] | Mohamedali M, Ibrahim H. and Henni A. J. Incorporation of acetate-based ionic liquids into a zeolitic imidazolate framework (ZIF-8) as efficient sorbents for carbon dioxide capture. Chem. Eng. J. 2018; 334: 817–828. |
[75] | Wei X, Li N, Wang Y, Xie Z, Huang H, Yang G, Li T, Qin X, Li S, Yang H, Zhu J, You F, Wu C. and Liu Y. Zeolitic imidazolate frameworks-based nanomaterials for biosensing, cancer imaging and phototheranostics. Appl. Mater. Today, 2021; 23: 100995. |
[76] | Carvalho P. J, Alvarez V. H, Schr¨oder B, Gil A. M, Marrucho I. M, Aznar M, Santos L. F. and Coutinho J. P. Specific Solvation Interactions of CO2 on Acetate and Trifluoroacetate Imidazolium Based Ionic Liquids at High Pressures. J. Phys. Chem. B. 2009; 113(19): 6803–6812. |
[77] | Shi W, Thompson R. L, Albenze E, Steckel J. A, Nulwala H. B. and Luebke D. R. Contribution of the Acetate Anion to CO2 Solubility in Ionic Liquids: Theoretical Method Development and Experimental Study. J. Phys. Chem. B. 2014; 118(26): 7383–7394. |
[78] | Aris A. Z, Mohd Hir Z. A. and Razak M. R. Metal-organic frameworks (MOFs) for the adsorptive removal of selected endocrine disrupting compounds (EDCs) from aqueous solution: A review. Appl. Mater. Today. 2020; 21: 100796. |
[79] | Lyu H, Fan J, Ling Y, Yu Y. and Xie Z. Functionalized cross-linked chitosan with ionic liquid and highly efficient removal of azo dyes from aqueous solution. Int. J. Biol. Macromol. 2019; 126: 1023–1029. |
[80] | Wang F, Zhang Z, Yang J, Wang L, Lin Y. and Wei Y. Immobilization of room temperature ionic liquid (RTIL) on silica gel for adsorption removal of thiophenic sulfur compounds from fuel. Fuel, 2013; 107: 394–399. |
[81] | Kavak S, Kulak H, Polat H. M, Keskin S. and Uzun A. Fast and Selective Adsorption of Methylene Blue from Water Using [BMIM][PF6]-Incorporated UiO-66 and NH2-UiO-66. Cryst. Growth Des. 2020; 20(6): 3590–3595. |
[82] | Xiao Y, Chen F, Zhu X, Qin H, Huang H, Zhang Y, Yin D, He X. and Wang K. Ionic liquid-assisted formation of lanthanide metal-organic framework nano/microrods for superefficient removal of Congo red. Chem. Res. Chin. Univ. 2015; 31(6): 899–903. |
[83] | Attig J. B, Latrous L. and Zougagh M. Ionic liquid and magnetic multiwalled carbon nanotubes for extraction of N-methylcarbamate pesticides from water samples prior their determination by capillary electrophoresis. Talanta, 2021; 226: 122106. |
[84] | Yohannes A, Li J. and Yao S. Various metal organic frameworks combined with imidazolium, quinolinum and benzothiazolium ionic liquids for removal of three antibiotics from water. J. Mol. Liq. 2020; 318: 114304. |
[85] | Lu D, Liu C, Qin M, Deng J, Shi G. and Zhou T. Functionalized ionic liquids-supported metal organic frameworks for dispersive solid phase extraction of sulfonamide antibiotics in water samples. Anal. Chim. Acta, 2020; 1133: 88–98. |
[86] | Yohannes A, Feng X. and Yao S. Dispersive solid-phase extraction of racemic drugs using chiral ionic liquid-metal-organic framework composite sorbent. J. Chromatogr. A. 2020; 1627: 461395. |
[87] | Zambare R. S. and Nemade P. R. Ionic liquid-modified graphene oxide sponge for hexavalent chromium removal from water. Colloids Surf. A. 2021; 609: 125657, |
[88] | Gangu K. K. and Jonnalagadda S. B. A Review on Metal-Organic Frameworks as Congenial Heterogeneous Catalysts for Potential Organic Transformations. Front. Chem. 2021; 9: 747615. |
[89] | Chatterjee A, Hu X. and Lam F. L. Towards a recyclable MOF catalyst for efficient production of furfural. Catal. Today. 2018; 314: 129–136. |
[90] | Pascanu V, Miera G. G, Inge A. K. and Martín-Matute B. Metal–Organic Frameworks as Catalysts for Organic Synthesis: A Critical Perspective. J. Am. Chem. Soc. 2019; 141(18): 7223–7234. |
[91] | Liu Y, Chen G, Chen J. and Niu H. Excellent Catalytic Performance of Ce–MOF with Abundant Oxygen Vacancies Supported Noble Metal Pt in the Oxidation of Toluene. Catalysts. 2022; 12: 775. |
[92] | Sun Y, Huang H, Vardhan H, Aguila B, Zhong C, Perman J. A, Al-Enizi A. M, Nafady A. and Ma S. Facile Approach to Graft Ionic Liquid into MOF for Improving the Efficiency of CO2 Chemical Fixation. ACS Appl. Mater. Interfaces. 2018; 10: 27124–27130. |
[93] | Tharun J, Bhin K-M, Roshan R, Kim D. W, Kathalikkattil A. C, Babu R, Ahn H. Y, Won Y. S. and Park D-W. Ionic liquid tethered post functionalized ZIF-90 framework for the cycloaddition of propylene oxide and CO2. Green Chem. 2016; 18(8): 2479–2487. |
[94] | Cui W-G, Zhang G-Y, Hu T-L. and Bu X-H. Metal-organic framework-based heterogeneous catalysts for the conversion of C1 chemistry: CO, CO2 and CH4. Coord. Chem. Rev. 2019; 387: 79–120. |
[95] | Xiang W, Shen C, Lu Z, Chen S, Li X, Zou R, Zhang Y. and Liu C-J. CO2 cycloaddition over ionic liquid immobilized hybrid zeolitic imidazolate frameworks: Effect of Lewis acid/base sites. Chem. Eng. Sci. 2021; 233: 116429. |
[96] | Zou M, Dai W, Mao P, Li B, Mao J, Zhang S, Yang L, Luo S, Luo X. and Zou J. Integration of multifunctionalities on ionic liquid-anchored MIL-101(Cr): A robust and efficient heterogeneous catalyst for conversion of CO2 into cyclic carbonates. Microporous Mesoporous Mater. 2021; 312: 110750. |
[97] | Jun W, Shuyu W, Ouwen X, Hanyang S, Jing Y. and Xiashi Z. Pyridine ionic liquid functionalized bimetallic MOF solid-phase extraction coupled with high performance liquid chromatography for separation/analysis sunset yellow. RSC Adv. 2022; 12: 30928-30935. |
[98] | Wei X, Wang Y, Chen J, Xu P and Zhou Y. Preparation of ionic liquid modified magnetic metal-organic frameworks composites for the solid-phase extraction of α–chymotrypsin. Talanta. 2018; 15(182): 484-491. |
[99] | Li Z, Yu B, Cong H, Yuan H. and Peng Q. Recent development and application of solid phase extraction materials. Rev. Adv. Mater. Sci, 2017; 49(1): 87-111. |
[100] | Huang X, Liu Y, Liu H, Liu G, Xu X, Li L, Lv J, Liu Z, Zhou W. and Xu D. Magnetic Solid-Phase Extraction of Dichlorodiphenyltrichloroethane and Its Metabolites from Environmental Water Samples Using Ionic Liquid Modified Magnetic Multiwalled Carbon Nanotube/Zeolitic Imidazolate Framework-8 as Sorbent. Molecules, 2019a; 24(15): 2758. |
[101] | Huang X, Liu Y, Liu H, Liu G, Xu X, Li L, Lv J, Gao H. and Xu D. Magnetic solid-phase extraction of pyrethroid insecticides from tea infusions using ionic liquid-modified magnetic zeolitic imidazolate framework-8 as an adsorbent. RSC Adv. 2019b; 9: 39272–39281. |
[102] | Gao S, Wu Y, Xie S, Shao Z, Bao X, Yan Y, Wu Y, Wang J. and Zhang Z. Determination of aflatoxins in milk sample with ionic liquid modified magnetic zeolitic imidazolate frameworks. J Chromatogr. B Anal Technol Biomed Life Sci. 2019; 1128: 121778. |
[103] | Zheng J, Li S, Wang Y, Li L, Su C, Liu H, Zhu F, Jiang R. and Ouyang G. In situ growth of IRMOF-3 combined with ionic liquids to prepare solid-phase microextraction fibers. Anal Chim Acta. 2014; 829: 22–27. |
[104] | Wu M, Ai Y, Zeng B, Zhao F. and Chromatogr J. In situ solvothermal growth of metal-organic framework–ionic liquid functionalized graphene nanocomposite for highly efficient enrichment of chloramphenicol and thiamphenicol. A. 2016; 1427: 1–7. |
[105] | Yohannes A. and Yao S. Preconcentration of tropane alkaloids by a metal organic framework (MOF)-immobilized ionic liquid with the same nucleus for their quantitation in Huashanshen tablets. Analyst. 2019; 144: 6989–7000. |
[106] | Ozce D, Muhammad Z, Nitasha H, Hasan C. G, Ala A. A. M. A, Hatice P. C, Samira F. K-O, Yuxin Z, Zeynep P. H, Alper U and Seda K. Composites of porous materials with ionic liquids: Synthesis, characterization, applications, and beyond. Microporous and Mesoporous Materials, 2022; 332: 11170. |
[107] | Yuechao C, Deng N and Zhihua Z. A review of recent advances in metal-organic frameworks materials for zero-energy passive adsorption of chemical pollutants in indoor environments. Science of the total environment, 2024; 953(25): 175926. |
[108] | Wang Y-M, Lin J-T, Ning G-H and Dan L. Recent advances in metal–organic frameworks for catalyzing organic transformation. Chem. Commun., 2025; 61: 7563-7572. |
[109] | Shangqing C, Ningyuan W, Huaidong Z, Mingyue Q, Lijuan S, Yang X, Jingfang Z, Yi H, Fanpeng C, P-G, Xiangping Z and Qun Y. Ionic Liquid-Functionalized Metal–Organic Frameworks/Covalent–Organic Frameworks for CO2 Capture and Conversion. Industrial & Engineering Chemistry Research, 2024; 63(8): 3443-3464. |
[110] | Dongxiao L, Anurag Y, Hong Z, Kaustav R, Pounraj T and Chengkuo L. Advances and Applications of Metal-Organic Frameworks (MOFs) in Emerging Technologies: A Comprehensive Review. Global challenges, 2024; 8(2): 2300244. |
[111] | Mamoona N, Sajid H-S, Tayyaba N, Samreen A, Rashid I, Mostafa A-I Abdul R, Syed Shoaib A-S and Muhammad A-N. Engineering of metal oxide integrated metal organic frameworks (MO@ MOF) composites for energy and environment sector. Materials Science and Engineering: B. 2025; 313: 117909. |
[112] | Beier M. J, Balderas-Xicohtencatl R, Alonso, L and Fernández L. Physicochemical insights into IL@MOF systems for CO₂ capture. Molecules, 2023; 28(20): 7091. |
[113] | Sun Y, Zeng H and Wang J. Recent advances in ionic liquid–MOF composites: From structure to applications. Energies, 2022; 15(23): 9098. |
[114] | Wang C, Li S, Zhang P and Liu H. Scalable strategies for functionalized MOF hybrids: Synthesis to applications. Coordination Chemistry Reviews, 2024; 493: 215313. |
[115] | Ma Y, Xu Z and Zhao, C. (2024). Toxicity and environmental impact of ionic liquids: State of the art. Journal of Hazardous Materials, 2024; 458: 132159. |
[116] | Hussain A, Rehman Z. U and Farooq U. Biodegradation of ionic liquids and their impact on ecosystems. Frontiers in Bioengineering and Biotechnology, 2024; 12: 1454247. |
[117] | Akeremale O. K, Ore O. T, Bayode A. A, Badamasi H, Olusola J. A and Durodola S. S. Synthesis, characterization, and activation of metal organic frameworks (MOFs) for the removal of emerging organic contaminants through the adsorption-oriented process: A review. Results in Chemistry, 2023; 5: 100866 |
[118] | Akeremale O. K. Metal-Organic Frameworks (MOFs) as Adsorbents for Purification of Dye-Contaminated Wastewater: A Review. J. Chem. Rev., 2022; 4(1): 1-14. |
APA Style
Akeremale, O. K., Aworetan, J., Aworetan, O. (2025). Design Techniques and Applications of Ionic Liquids Incorporated Metal Organic Frameworks (IL/MOFs). American Journal of Physical Chemistry, 14(2), 33-50. https://doi.org/10.11648/j.ajpc.20251402.13
ACS Style
Akeremale, O. K.; Aworetan, J.; Aworetan, O. Design Techniques and Applications of Ionic Liquids Incorporated Metal Organic Frameworks (IL/MOFs). Am. J. Phys. Chem. 2025, 14(2), 33-50. doi: 10.11648/j.ajpc.20251402.13
@article{10.11648/j.ajpc.20251402.13, author = {Olaniran Kolawole Akeremale and Joy Aworetan and Olamide Aworetan}, title = {Design Techniques and Applications of Ionic Liquids Incorporated Metal Organic Frameworks (IL/MOFs) }, journal = {American Journal of Physical Chemistry}, volume = {14}, number = {2}, pages = {33-50}, doi = {10.11648/j.ajpc.20251402.13}, url = {https://doi.org/10.11648/j.ajpc.20251402.13}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajpc.20251402.13}, abstract = {Metal-organic frameworks (MOFs) are an interesting class of materials consisting of central metal ions and organic binders. These are porous crystalline materials in which different organic groups are combined with metal that has been cemented into place to provide a rigid and porous geometry. Green Metal Organic Frameworks (GMOFs) are a novel class of porous materials with a number of distinctive properties, including uniform and tunable pore size, large surface areas, adaptable pore structure, high porosities, acceptable thermal and chemical stabilities, simple production, and structural diversity. In order to alter the physicochemical characteristics and gas affinities of MOFs, ionic liquids (ILs) have recently been inserted as cavity occupants into the pores of metal organic frameworks (MOFs). Recent research has demonstrated that IL/MOF composites outperform pristine MOFs in a variety of applications, including gas storage, membrane-based gas separation, adsorption, catalysis, and ionic conductivity. Ionic liquid-modified MOFs (IL/MOFs) composite materials benefit from the high stability and versatile physical and chemical properties of ILs while retaining the structural characteristics of MOFs. Scholars are particularly interested in them because of their vast potential for usage in the domains of isolation and investigation. In this review, we provide a comprehensive overview of the applications of IL/MOF composites and talk about the latest advancements in their synthesis. The benefits and drawbacks of employing IL/MOF composites in diverse applications were investigated in order to ascertain the future directions in this field. }, year = {2025} }
TY - JOUR T1 - Design Techniques and Applications of Ionic Liquids Incorporated Metal Organic Frameworks (IL/MOFs) AU - Olaniran Kolawole Akeremale AU - Joy Aworetan AU - Olamide Aworetan Y1 - 2025/06/30 PY - 2025 N1 - https://doi.org/10.11648/j.ajpc.20251402.13 DO - 10.11648/j.ajpc.20251402.13 T2 - American Journal of Physical Chemistry JF - American Journal of Physical Chemistry JO - American Journal of Physical Chemistry SP - 33 EP - 50 PB - Science Publishing Group SN - 2327-2449 UR - https://doi.org/10.11648/j.ajpc.20251402.13 AB - Metal-organic frameworks (MOFs) are an interesting class of materials consisting of central metal ions and organic binders. These are porous crystalline materials in which different organic groups are combined with metal that has been cemented into place to provide a rigid and porous geometry. Green Metal Organic Frameworks (GMOFs) are a novel class of porous materials with a number of distinctive properties, including uniform and tunable pore size, large surface areas, adaptable pore structure, high porosities, acceptable thermal and chemical stabilities, simple production, and structural diversity. In order to alter the physicochemical characteristics and gas affinities of MOFs, ionic liquids (ILs) have recently been inserted as cavity occupants into the pores of metal organic frameworks (MOFs). Recent research has demonstrated that IL/MOF composites outperform pristine MOFs in a variety of applications, including gas storage, membrane-based gas separation, adsorption, catalysis, and ionic conductivity. Ionic liquid-modified MOFs (IL/MOFs) composite materials benefit from the high stability and versatile physical and chemical properties of ILs while retaining the structural characteristics of MOFs. Scholars are particularly interested in them because of their vast potential for usage in the domains of isolation and investigation. In this review, we provide a comprehensive overview of the applications of IL/MOF composites and talk about the latest advancements in their synthesis. The benefits and drawbacks of employing IL/MOF composites in diverse applications were investigated in order to ascertain the future directions in this field. VL - 14 IS - 2 ER -