Research Article | | Peer-Reviewed

Rainfall Trend and Variability over Western Amhara, Ethiopia

Received: 6 September 2025     Accepted: 19 September 2025     Published: 28 October 2025
Views:       Downloads:
Abstract

Climate change has become a pressing global challenge, with rural communities in Ethiopia among the most vulnerable due to their dependence on rain-fed agriculture. This study examined rainfall variability and trends in Western Amhara, Ethiopia, from 1992 to 2021 using daily rainfall data from eleven meteorological stations. Analytical methods included the Coefficient of Variation (CV), Precipitation Concentration Index (PCI), Standardized Rainfall Anomalies (SRA), and Mann-Kendall trend tests, supported by Climate Data Tool (CDT) software. Results revealed considerable spatiotemporal rainfall variability, with annual totals ranging from 995 mm to 1783 mm and a mean of 1316 mm. The PCI analysis indicated irregular to strongly irregular rainfall distribution, particularly in Bahir Dar, Metema, and Nefas Mewucha. The lowest precipitation concentration index was found at Chagni and Debre Markos stations, with a value of 16.6. Seasonal analysis showed that the Kiremt rains contributed the largest share of annual totals, with higher variability compared to annual averages. Standardized anomalies highlighted alternating wet and dry years, signaling recurrent drought and excess rainfall events. These findings underscore the importance of rainfall variability as a determinant of food security, agricultural productivity, and water resource management. Understanding such variability is crucial for designing adaptive strategies to enhance resilience among farming communities in Ethiopia.

Published in International Journal of Economy, Energy and Environment (Volume 10, Issue 4)
DOI 10.11648/j.ijeee.20251004.12
Page(s) 105-126
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2025. Published by Science Publishing Group

Keywords

Trend, Variability, Precipitation Concentration Index, Standardized Rainfall Anomalies, Western Amhara

References
[1] Ademe, D., Zaitchik, B. F., Tesfaye, K., Simane, B., Alemayehu, G. & Adgo, E. 2020a. Climate Trends And Variability At Adaptation Scale: Patterns And Perceptions In An Agricultural Region Of The Ethiopian Highlands. Weather And Climate Extremes, 29, 100263.
[2] Adhikari, U., Nejadhashemi, A. P. & Woznicki, S. A. 2015. Climate Change And Eastern Africa: A Review Of Impact On Major Crops. Food And Energy Security, 4, 110-132.
[3] Agnew, C. & Chappell, A. J. G. 1999. Drought In The Sahel. 48, 299-311.
[4] Alemu, M. M., Bawoke, G. T. J. J. O. W. & Change, C. 2020. Analysis Of Spatial Variability And Temporal Trends Of Rainfall In Amhara Region, Ethiopia. 11, 1505-1520.
[5] Alexandersson, H. & Moberg, A. J. I. J. O. C. A. J. O. T. R. M. S. 1997. Homogenization Of Swedish Temperature Data. Part I: Homogeneity Test For Linear Trends. 17, 25-34.
[6] Asfaw, A., Simane, B., Hassen, A., Bantider, A. J. W. & Extremes, C. 2018a. Variability And Time Series Trend Analysis Of Rainfall And Temperature In Northcentral Ethiopia: A Case Study In Woleka Sub-Basin. 19, 29-41.
[7] Asfaw, S., Pallante, G. & Palma, A. J. W. D. 2018b. Diversification Strategies And Adaptation Deficit: Evidence From Rural Communities In Niger. 101, 219-234.
[8] Assefa, A.,, B. A. &, A. A. T. 2018. Perceptions Of Stakeholders On Climate Change And Adaptation Strategies In Ethiopia.
[9] Bewket, W. & Conway, D. J. I. J. O. C. A. J. O. T. R. M. S. 2007. A Note On The Temporal And Spatial Variability Of Rainfall In The Drought‐Prone Amhara Region Of Ethiopia. 27, 1467-1477.
[10] Board 2006. (Board 2006. Bureau Of Agriculture And Development (2006). First Year Performance Report On Sustainable Development And Poverty Reduction Program. Bahir Dar, Ethiopia. African Journal Of Agricultural Research, 7, 1475-1486.
[11] Bofed 2014. 2014. Report On The Regional Economy Of Amhara Region, Bureau Of Finance And Economic Development, Bahir Dar, Ethiopia.
[12] Campozano, L., Sánchez, E., Avilés, Á. & Samaniego, E. J. M. 2014. Evaluation Of Infilling Methods For Time Series Of Daily Precipitation And Temperature: The Case Of The Ecuadorian Andes. 5, 99-115.
[13] Chakraborty, S., Pandey, R., Chaube, U. & Mishra, S. J. I. J. A. S. E. R. 2013. Trend And Variability Analysis Of Rainfall Series At Seonath River Basin, Chhattisgarh (India). 2, 425-434.
[14] Challinor, A. J., Watson, J., Lobell, D. B., Howden, S. M., Smith, D. R. & Chhetri, N. 2014. A Meta-Analysis Of Crop Yield Under Climate Change And Adaptation. Nature Climate Change, 4, 287-291.
[15] Chandola, V., Banerjee, A. & Kumar, V. J. A. C. S. 2007. Outlier Detection: A Survey. 14, 15.
[16] Cheung, W. H., Senay, G. B. & Singh, A. J. I. J. O. C. A. J. O. T. R. M. S. 2008. Trends And Spatial Distribution Of Annual And Seasonal Rainfall In Ethiopia. 28, 1723-1734.
[17] Chow, V. T., Maidment, D. R. & Mays, L. W, 1988. Chow, V. T., Maidment, D. R. & Mays, L. W. 1988. Applied Hydrology, Mcgraw-Hill Book Company, Singpore.
[18] Conway, D., Mould, C. & Bewket, W. J. I. J. O. C. A. J. O. T. R. M. S. 2004. Over One Century Of Rainfall And Temperature Observations In Addis Ababa, Ethiopia. 24, 77-91.
[19] Conway, D. J. S. E. J. O. S. 2000. Some Aspects Of Climate Variability In The North East Ethiopian Highlands-Wollo And Tigray. 23, 139-161.
[20] Csa 2005. Statistical Abstract Of Ethiopia. Central Statistical Authority. Addis Ababa, Ethiopia.
[21] De Luis, M., Gonzalez-Hidalgo, J., Brunetti, M., Longares, L. J. N. H. & Sciences, E. S. 2011. Precipitation Concentration Changes In Spain 1946–2005. 11, 1259-1265.
[22] Dereje, A.,, K. T.,, G. M. &, B. Y. A. W. B. 2012. Variability Of Rainfall And Its Current Trend In Amhara Region, Ethiopia. African Journal Of Agricultural Reseearch, 7.
[23] Dinku, T. 2019. Challenges With Availability And Quality Of Climate Data In Africa. Extreme Hydrology And Climate Variability. Elsevier.
[24] Dinku, T., Block, P., Sharoff, J., Hailemariam, K., Osgood, D., Del Corral, J., Cousin, R. & Thomson, M. C. J. E. P. 2014. Bridging Critical Gaps In Climate Services And Applications In Africa. 1, 1-13.
[25] Dinku, T., Faniriantsoa, R., Islam, S., Nsengiyumva, G. & Grossi, A. J. F. I. C. 2022. The Climate Data Tool: Enhancing Climate Services Across Africa. 185.
[26] Dinku, T., Thomson, M. C., Cousin, R., Del Corral, J., Ceccato, P., Hansen, J., Connor, S. J. J. C. & Development 2018. Enhancing National Climate Services (Enacts) For Development In Africa. 10, 664-672.
[27] Dunning, C. M., Black, E. & Allan, R. P. 2018. Later Wet Seasons With More Intense Rainfall Over Africa Under Future Climate Change. Journal Of Climate, 31, 9719-9738.
[28] Enyew, B. & Steeneveld, G. 2014. Analysing The Impact Of Topography On Precipitation And Flooding On The Ethiopian Highlands. J. Geol. Geosci, 3.
[29] Eshetu, G., Johansson, T. P., Garedew, W., Yisahak, T. J. A. J. O. B. & Statistics, E. 2018. Climate Variability And Small-Scale Farmer Adaptation Strategy In Setema-Gatira Area Of Jimmaa, Southwestern Ethiopia.
[30] Fekadu, K. J. E. S. 2015. Ethiopian Seasonal Rainfall Variability And Prediction Using Canonical Correlation Analysis (Cca). 4, 112-119.
[31] Ferijal, T., Batelaan, O., Shanafield, M. & Alfahmi, F. 2022. Determination Of Rainy Season Onset And Cessation Based On A Flexible Driest Period. Theoretical And Applied Climatology, 148, 91-104.
[32] Gallagher, C., Lund, R. & Robbins, M. J. J. O. C. 2013. Changepoint Detection In Climate Time Series With Long-Term Trends. 26, 4994-5006.
[33] Gamachu D 1988. Gamachu D (1988) Some Patterns Of Altitudinal Variation of Climatic Elements In The Mountainous Regions Of Ethiopia. Mrd 8(2/3): 131-138.
[34] Gao, F., Wang, Y., Chen, X. & Yang, W. 2020. Trend Analysis Of Rainfall Time Series In Shanxi Province, Northern China (1957–2019). Water, 12, 2335.
[35] Gebrechorkos, S. H., Hülsmann, S. & Bernhofer, C. J. I. J. O. C. 2019. Changes In Temperature And Precipitation Extremes In Ethiopia, Kenya, And Tanzania. 39, 18-30.
[36] Gemeda, D. 2019. Climate Change Variability Analysis In And Around Jinka, Southern Ethiopia. With Special Emphasis On Temperature And Rainfall.
[37] Getachew, B. J. J. O. D. & Management, M. L. 2018. Trend Analysis Of Temperature And Rainfall In South Gonder Zone, Anhara Ethiopia. 5, 1111.
[38] Gharineiat, Z. & Deng, X. 2018. Description And Assessment Of Regional Sea-Level Trends And Variability From Altimetry And Tide Gauges At The Northern Australian Coast. Advances In Space Research, 61, 2540-2554.
[39] Gleixner, S., Keenlyside, N., Viste, E. & Korecha, D. J. C. D. 2017. The El Niño Effect On Ethiopian Summer Rainfall. 49, 1865-1883.
[40] González-Rouco, J. F., Jiménez, J. L., Quesada, V. & Valero, F. J. J. O. C. 2001. Quality Control And Homogeneity Of Precipitation Data In The Southwest Of Europe. 14, 964-978.
[41] Grossi, A. & Dinku, T. J. O. E. 2022. Enhancing National Climate Services: How Systems Thinking Can Accelerate Locally Led Adaptation. 5, 74-83.
[42] Guo, E., Wang, Y., Jirigala, B. & Jin, E. J. J. O. C. P. 2020. Spatiotemporal Variations Of Precipitation Concentration And Their Potential Links To Drought In Mainland China. 267, 122004.
[43] Hare, W. 2003. Assessment Of Knowledge On Impacts Of Climate Change–Contribution. Arctic, 100.
[44] Hein, Y., Vijitsrikamol, K., Attavanich, W. & Janekarnkij, P. 2019. Do Farmers Perceive The Trends Of Local Climate Variability Accurately? An Analysis Of Farmers’ Perceptions And Meteorological Data In Myanmar. Climate, 7, 64.
[45] Hill, R. V. & Porter, C. J. W. D. 2017. Vulnerability To Drought And Food Price Shocks: Evidence From Ethiopia. 96, 65-77.
[46] Hundera, H., Mpandeli, S., Bantider, A. J. W. & Extremes, C. 2019. Smallholder Farmers’ Awareness And Perceptions Of Climate Change In Adama District, Central Rift Valley Of Ethiopia. 26, 100230.
[47] Kang, H. M. & Yusof, F. J. I. J. C. M. S. 2012. Homogeneity Tests On Daily Rainfall Series. 7, 9-22.
[48] Karpouzos, D., Kavalieratou, S. & Babajimopoulos, C. 2010. Trend Analysis Of Precipitation Data In Pieria Region (Greece). European Water, 30, 30-40.
[49] Koudahe, K., Kayode, A. J., Samson, A. O., Adebola, A. A., Djaman, K. J. A. & Sciences, C. 2017. Trend Analysis In Standardized Precipitation Index And Standardized Anomaly Index In The Context Of Climate Change In Southern Togo. 7, 401.
[50] Makate, C. 2019. Effective Scaling Of Climate Smart Agriculture Innovations In African Smallholder Agriculture: A Review Of Approaches, Policy And Institutional Strategy Needs. Environmental Science & Policy, 96, 37-51.
[51] Mallakpour, I. & Villarini, G. 2016. A Simulation Study To Examine The Sensitivity Of The Pettitt Test To Detect Abrupt Changes In Mean. Hydrol. Sci. J. 61, 245–254.
[52] Mekonen, A. A., Berlie, A. B. & Ferede, M. B. J. G. D. 2020. Spatial And Temporal Drought Incidence Analysis In The Northeastern Highlands Of Ethiopia. 7, 1-17.
[53] Michiels, P., Gabriels, D. & Hartmann, R. J. C. 1992. Using The Seasonal And Temporal Precipitation Concentration Index For Characterizing The Monthly Rainfall Distribution In Spain. 19, 43-58.
[54] Modarres, R. & Sarhadi, A. J. J. O. G. R. A. 2009. Rainfall Trends Analysis Of Iran In The Last Half Of The Twentieth Century. 114.
[55] Mubiru, D. N., Radeny, M., Kyazze, F. B., Zziwa, A., Lwasa, J., Kinyangi, J. & Mungai, C. 2018. Climate Trends, Risks And Coping Strategies In Smallholder Farming Systems In Uganda. Climate Risk Management, 22, 4-21.
[56] Muluneh Getaneh & Tesfaye, K. 2015. Analysis Of Past And Future Intra-Seasonal Rainfall Variability And Its Implications For Crop Production In The North Eastern Amhara Region, Ethiopia. Haramaya University.
[57] Naab, F. Z., Abubakari, Z. & Ahmed, A. 2019. The Role Of Climate Services In Agricultural Productivity In Ghana: The Perspectives Of Farmers And Institutions. Climate Services, 13, 24-32.
[58] Narapusetty, B., Delsole, T. & Tippett, M. K. J. J. O. C. 2009. Optimal Estimation Of The Climatological Mean. 22, 4845-4859.
[59] Niang, I., Ruppel, O. C., Abdrabo, M. A., Essel, A., Lennard, C., Padgham, J., Urquhart, P. J. C. C. I., Adaptation & Change, V. P. B. R. A. W. G. I. C. T. T. F. A. R. O. T. I. P. O. C. 2014. Africa. Climate Change 2014: Impacts, Adaptation, And Vulnerability. Part B: Regional Aspects. Contribution Of Working Group Ii To The Fifth Assessment Report Of The Intergovernmental Panel On Climate Change. 1199-1266.
[60] Nms 2007. (National Meteorological Services). Climate Change National Adaptation Program OfAction (Napa) Of Ethiopia. Nms, Addis Ababa, Ethiopia.
[61] Oliver, J. E. J. T. P. G. 1980. Monthly Precipitation Distribution: A Comparative Index. 32, 300-309.
[62] Partal, T. & Kahya, E. 2006. Trend Analysis In Turkish Precipitation Data. Hydrological Processes: An International Journal, 20, 2011-2026.
[63] Pulwarty, R. S., Olanrewaju, S., & Zorba, P. (2009). Communicating Agro Clima Tological Information, Includingforecasts, For Agricultural Decisions. Guide To Agro-Meteorological Practices Wmo Commission For Agricultural And Meteorological Practices.
[64] Reddy S. J 1990. Reddy S. J. 1990. Methodology: Agro-Climatic Analogue Technique And Applications As Relevant To Dry Land Agriculture. Agro Climatological Series Eth 86/021-Wmo/Undp/Nmsa, Addis Ababa, Ethiopia. P60.
[65] Sahoo, S. & Govind, A. J. A. 2023. Part I: To Investigate The Past, Present And Future Plausible Changes In The Hydrometeorological Conditions For Climate-Resilient Agriculture Sustainability Under Climate Uncertainty In Ethiopia. 13, 387.
[66] Segele, Z. T. & Lamb, P. J. 2005. Characterization And Variability Of Kiremt Rainy Season Over Ethiopia. Meteorology And Atmospheric Physics, 89, 153-180.
[67] Seleshi, Y., Camberlin, P. J. T. & Climatology, A. 2006. Recent Changes In Dry Spell And Extreme Rainfall Events In Ethiopia. 83, 181-191.
[68] Seleshi, Y. & Zanke, U. J. I. J. O. C. A. J. O. T. R. M. S. 2004. Recent Changes In Rainfall And Rainy Days In Ethiopia. 24, 973-983.
[69] Sen, P. K. 1968. Estimates Of The Regression Coefficient Based On Kendall's Tau. Journal Of The American Statistical Association, 63, 1379-1389.
[70] Squintu, A. A., Van Der Schrier, G., Štěpánek, P., Zahradníček, P., Tank, A. K. J. T. & Climatology, A. 2020. Comparison Of Homogenization Methods For Daily Temperature Series Against An Observation-Based Benchmark Dataset. 140, 285-301.
[71] Taye, M., Zewdu, F. & Ayalew, D. J. A. J. O. R. C. 2013. Characterizing The Climate System Of Western Amhara, Ethiopia: A Gis Approach. 1, 319-355.
[72] Tesfamariam, B. G., Gessesse, B., Melgani, F. J. W. & Extremes, C. 2019. Characterizing The Spatiotemporal Distribution Of Meteorological Drought As A Response To Climate Variability: The Case Of Rift Valley Lakes Basin Of Ethiopia. 26, 100237.
[73] Wagaye, Bahiru, A. & Rema, A. M. J. 2020. Rainfall Variability And Trends Over Central Ethiopia. 10, 2054.
[74] Wedajo, G. K., Muleta, M. K., Gessesse, B. & Koriche, S. A. J. E. S. R. 2019. Spatiotemporal Climate And Vegetation Greenness Changes And Their Nexus For Dhidhessa River Basin, Ethiopia. 8, 1-24.
[75] Yashim, J., Abdussalam, A., Abbas, I. J. P. M.-J. O. T. & Physics, A. 2020. An Assessment Of Rainfall Attributes And Onsets-Cessations Dates Effective For Cropping In Lafia, Nasarawa State, Nigeria. 2, 7-14.
[76] Yeshitila, T., Moges, M. A., Dessalegn, T. A. & Melesse, A. M. 2019. Climate-Induced Flood Inundation In Fogera-Dera Floodplain, Lake Tana Basin, Ethiopia. Extreme Hydrology And Climate Variability. Elsevier.
[77] Yohannes, G. J. N. M. S. A., Addis Ababa, Ethiopia 2003. Ethiopia In View Of The National Adaptation Program Of Action.
[78] Zhang, X., Alexander, L., Hegerl, G. C., Jones, P., Tank, A. K., Peterson, T. C., Trewin, B. & Zwiers, F. W. J. W. I. R. C. C. 2011. Indices For Monitoring Changes In Extremes Based On Daily Temperature And Precipitation Data. 2, 851-870.
Cite This Article
  • APA Style

    Mengiste, B. G. (2025). Rainfall Trend and Variability over Western Amhara, Ethiopia. International Journal of Economy, Energy and Environment, 10(4), 105-126. https://doi.org/10.11648/j.ijeee.20251004.12

    Copy | Download

    ACS Style

    Mengiste, B. G. Rainfall Trend and Variability over Western Amhara, Ethiopia. Int. J. Econ. Energy Environ. 2025, 10(4), 105-126. doi: 10.11648/j.ijeee.20251004.12

    Copy | Download

    AMA Style

    Mengiste BG. Rainfall Trend and Variability over Western Amhara, Ethiopia. Int J Econ Energy Environ. 2025;10(4):105-126. doi: 10.11648/j.ijeee.20251004.12

    Copy | Download

  • @article{10.11648/j.ijeee.20251004.12,
      author = {Behabtu Gobeze Mengiste},
      title = {Rainfall Trend and Variability over Western Amhara, Ethiopia
    },
      journal = {International Journal of Economy, Energy and Environment},
      volume = {10},
      number = {4},
      pages = {105-126},
      doi = {10.11648/j.ijeee.20251004.12},
      url = {https://doi.org/10.11648/j.ijeee.20251004.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijeee.20251004.12},
      abstract = {Climate change has become a pressing global challenge, with rural communities in Ethiopia among the most vulnerable due to their dependence on rain-fed agriculture. This study examined rainfall variability and trends in Western Amhara, Ethiopia, from 1992 to 2021 using daily rainfall data from eleven meteorological stations. Analytical methods included the Coefficient of Variation (CV), Precipitation Concentration Index (PCI), Standardized Rainfall Anomalies (SRA), and Mann-Kendall trend tests, supported by Climate Data Tool (CDT) software. Results revealed considerable spatiotemporal rainfall variability, with annual totals ranging from 995 mm to 1783 mm and a mean of 1316 mm. The PCI analysis indicated irregular to strongly irregular rainfall distribution, particularly in Bahir Dar, Metema, and Nefas Mewucha. The lowest precipitation concentration index was found at Chagni and Debre Markos stations, with a value of 16.6. Seasonal analysis showed that the Kiremt rains contributed the largest share of annual totals, with higher variability compared to annual averages. Standardized anomalies highlighted alternating wet and dry years, signaling recurrent drought and excess rainfall events. These findings underscore the importance of rainfall variability as a determinant of food security, agricultural productivity, and water resource management. Understanding such variability is crucial for designing adaptive strategies to enhance resilience among farming communities in Ethiopia.
    },
     year = {2025}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Rainfall Trend and Variability over Western Amhara, Ethiopia
    
    AU  - Behabtu Gobeze Mengiste
    Y1  - 2025/10/28
    PY  - 2025
    N1  - https://doi.org/10.11648/j.ijeee.20251004.12
    DO  - 10.11648/j.ijeee.20251004.12
    T2  - International Journal of Economy, Energy and Environment
    JF  - International Journal of Economy, Energy and Environment
    JO  - International Journal of Economy, Energy and Environment
    SP  - 105
    EP  - 126
    PB  - Science Publishing Group
    SN  - 2575-5021
    UR  - https://doi.org/10.11648/j.ijeee.20251004.12
    AB  - Climate change has become a pressing global challenge, with rural communities in Ethiopia among the most vulnerable due to their dependence on rain-fed agriculture. This study examined rainfall variability and trends in Western Amhara, Ethiopia, from 1992 to 2021 using daily rainfall data from eleven meteorological stations. Analytical methods included the Coefficient of Variation (CV), Precipitation Concentration Index (PCI), Standardized Rainfall Anomalies (SRA), and Mann-Kendall trend tests, supported by Climate Data Tool (CDT) software. Results revealed considerable spatiotemporal rainfall variability, with annual totals ranging from 995 mm to 1783 mm and a mean of 1316 mm. The PCI analysis indicated irregular to strongly irregular rainfall distribution, particularly in Bahir Dar, Metema, and Nefas Mewucha. The lowest precipitation concentration index was found at Chagni and Debre Markos stations, with a value of 16.6. Seasonal analysis showed that the Kiremt rains contributed the largest share of annual totals, with higher variability compared to annual averages. Standardized anomalies highlighted alternating wet and dry years, signaling recurrent drought and excess rainfall events. These findings underscore the importance of rainfall variability as a determinant of food security, agricultural productivity, and water resource management. Understanding such variability is crucial for designing adaptive strategies to enhance resilience among farming communities in Ethiopia.
    
    VL  - 10
    IS  - 4
    ER  - 

    Copy | Download

Author Information
  • Sections