American Journal of Optics and Photonics

Submit a Manuscript

Publishing with us to make your research visible to the widest possible audience.

Propose a Special Issue

Building a community of authors and readers to discuss the latest research and develop new ideas.

Types of Solar Cells and Application

A solar cell is an electronic device which directly converts sunlight into electricity. Light shining on the solar cell produces both a current and a voltage to generate electric power. This process requires firstly, a material in which the absorption of light raises an electron to a higher energy state, and secondly, the movement of this higher energy electron from the solar cell into an external circuit. The electron then dissipates its energy in the external circuit and returns to the solar cell. A variety of materials and processes can potentially satisfy the requirements for photovoltaic energy conversion, but in practice nearly all photovoltaic energy conversion uses semiconductor materials in the form of a p-n junction. With regard to the development of sustainable energy, such as solar energy, in this article we will Study types of solar cells and their applications

Solar Cells, Semiconductor Materials, Sustainable Energy

Askari Mohammad Bagher, Mirzaei Mahmoud Abadi Vahid, Mirhabibi Mohsen. (2015). Types of Solar Cells and Application. American Journal of Optics and Photonics, 3(5), 94-113.

Copyright © 2015 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License ( which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

3. Ciesielskia, Peter N; Frederick M. Hijazib, Amanda M. Scott, Christopher J. Faulkner, Lisa Beard, Kevin Emmett, Sandra J. Rosenthal, David Cliffel, G. Kane Jennings (May 2010). "photosystem I- Based biohybrid phtoelectrochemical cells". Biosource Technology 101 (9): 3047–3053. doi:10.1016/j.biortech.2009.12.045. Retrieved 24 October 2013.
4. Yehezkeli, Omer; Ran Tel-Vered, Julian Wasserman, Alexander Trifonov, Dorit Michaeli, Rachel Nechushtai, Itamar Willner (13 March 2012). "Integrated photosytem II-Based photoelectrochemical cells". Nature communication. doi:10.1038/ncomms1741.
5. Wohlgemuth JH, Narayanan S. Buried contact concentrator solar cells. Twenty Second IEEE Photovoltaic Specialists Conference. 1991 ;1:273-277.
6. "Publications, Presentations, and News Database: Cadmium Telluride". National Renewable Energy Laboratory.
7. K. Zweibel, J. Mason, V. Fthenakis, "A Solar Grand Plan", Scientific American, Jan 2008. CdTe PV is the cheapest example of PV technologies and prices are about 16¢/kWh with US Southwest sunlight.
8. Further mention of cost competitiveness: "Solar Power Lightens Up with Thin-Film Technology", Scientific American, April 2008.
9. Peng et al. (2013). "Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems". Renewable and Sustainable Energy Reviews 19: 255–274. doi:10.1016/j.rser.2012.11.035.
10. V. Fthenakis and H. C. Kim. (2010). "Life-cycle uses of water in U.S. electricity generation". Renewable and Sustainable Energy Reviews 14: 2039–2048. doi:10.1016/j.rser.2010.03.008.
11. de Wild-Scholten, Mariska (2013). "Energy payback time and carbon footprint of commercial photovoltaic systems". Solar Energy Materials & Solar Cells 119: 296–305. doi:10.1016/j.solmat.2013.08.037.
12. Fthenakis, Vasilis M. (2004). "Life cycle impact analysis of cadmium in CdTe PV production" (PDF). Renewable and Sustainable Energy Reviews 8 (4): 303–334. doi:10.1016/j.rser.2003.12.001. Archived from the original on 23 September 2014.
13. Werner, Jürgen H. (2 November 2011). "Toxic Substances In Photovoltaic Modules". Institute of Photovoltaics, University of Stuttgart, Germany - The 21st International Photovoltaic Science and Engineering Conference 2011 Fukuoka, Japan. p. 2. Archived from the original (PDF) on 23 September 2014. Retrieved 23 September 2014.
14. "Water Solubility of Cadmium Telluride in a Glass-to-Glass Sealed PV Module" (PDF). Vitreous State Laboratory, and AMELIO Solar, Inc. 2011.
15. Herman Trabish, The Lowdown on the Safety of First Solar's CdTe Thin Film, March 19, 2012
16. Robert Mullins, Cadmium: The Dark Side of Thin-Film?, September 25, 2008
17. Supply Constraints Analysis, National Renewable Energy Laboratory
18. Fraunhofer ISE Photovoltaics Report, July 28, 2014, pages 18,19
20. (2014). "Technology Roadmap: Solar Photovoltaic Energy" (PDF). IEA. Archived from the original on 7 October 2014. Retrieved 7 October 2014.
21. Fraunhofer ISE and NREL (January 2015). "Current Status of Concentrator Photovoltaic (CPV) Technology" (PDF). Archived from the original on 25 April 2015. Retrieved 25 April 2015.
22. "DOE Solar Energy Technologies Program Peer Review" (PDF). U.S. department of energy 2009. Retrieved 10 February 2011.
23. Wan, Haiying "Dye Sensitized Solar Cells", University of Alabama Department of Chemistry, p. 3
24. "Dye-Sensitized vs. Thin Film Solar Cells", European Institute for Energy Research, 30 June 2006
25. Tributsch, H (2004). "Dye sensitization solar cells: a critical assessment of the learning curve". Coordination Chemistry Reviews 248 (13–14): 1511. doi:10.1016/j.ccr.2004.05.030.
26. Moss, S. J. and Ledwith, A. (1987). The Chemistry of the Semiconductor Industry. Springer. ISBN 0-216-92005-1.
27. Milliron, Delia J.; Gur, Ilan; Alivisatos, A. Paul (2005). "Hybrid Organic–Nanocrystal Solar Cells". MRS Bulletin 30: 41–44. doi:10.1557/mrs2005.8.
28. Shaheen, Sean E.; Ginley, David S.; Jabbour, Ghassan E. (2005). "Organic–Based Photovoltaics". MRS Bulletin 30: 10. doi:10.1557/mrs2005.2.
29. Saunders, B.R.; Turner, M.L. (2008). "Nanoparticle-polymer photovoltaic cells". Advances in Colloid and Interface Science 138 (1): 1–23. doi:10.1016/j.cis.2007.09.001. PMID 17976501.
30. Sariciftci, N.S.; Smilowitz, L.; Heeger, A.J.; and Wudl, F. (1993). "Semiconducting polymers (as donors) and buckminsterfullerene (as acceptor): photoinduced electron transfer and heterojunction devices". Synthetic Metals 59 (3): 333–352. doi:10.1016/0379-6779(93)91166-Y.
31. Ginger, D.S.; Greenham, N.C. (1999). "Photoinduced electron transfer from conjugated polymers to CdSe nanocrystals". Physical Review B 59 (16): 624–629. Bibcode:1999PhRvB..5910622G. doi:10.1103/PhysRevB.59.10622.
32. Shaw, P.E.; Ruseckas, A.; Samuel, I.D.W (2008). "Exciton Diffusion Measurements in Poly(3-hexylthiophene)". Advanced Materials 20 (18): 3516–3520. doi:10.1002/adma.200800982.
33. Michael G Debije, Paul P C Verbunt, Pradeep J Nadkarni, Suresh Velate, Kankan Bhaumik, Sankaran Nedumbamana, Brenda C Rowan, Bryce S Richards and Theo L Hoeks. Promising fluorescent dye for solar energy conversion based on a perylene perinone. Applied Optics 50(2):163-169, 2011.
34. Michael G Debije, Paul P C Verbunt, Brenda C Rowan, Bryce S Richards and Theo L Hoeks. Measured surface loss from luminescent solar concentrator waveguides. Applied Optics 47(36):6763-6768, 2008.
35. K R McIntosh, N Yamada and B S Richards. Theoretical comparison of cylindrical and square-planar luminescent solar concentrators. Applied Physics B-Lasers and Optics 88(2):285-290, 2007.
36. Reisfeld, Renata; Neuman, Samuel (July 13, 1978). "Planar solar energy converter and concentrator based on uranyl-doped glass". Nature 274: 144–145. doi:10.1038/274144a0.
37. Reisfeld, Renata; Kalisky, Yehoshua (1980). "Improved planar solar converter based on uranyl neodymium and holmium glasses". Nature 283 (5744): 281–282. doi:10.1038/283281a0.
38. W.Heywang, K.H.Zaininger, Silicon: the semiconductor material, in Silicon: evolution and future of a technology, P.Siffert, E.F.Krimmel eds., Springer Verlag, 2004.
39. Green, Martin A. (2003). Third Generation Photovoltaics: Advanced Solar Energy Conversion. Springer. p. 65.
40. "New South Innovations News - UNSW breaks solar cell record". NewSouth Innovations. 2008-11-18. Retrieved 2012-06-23.[dead link]
41. "Solar Junction Breaks Concentrated Solar World Record with 43.5% Efficiency".
42. "Sharp Hits Concentrator Solar Cell Efficiency Record, 43.5%"
43. N. Gupta, G. F. Alapatt, R. Podila, R. Singh, K.F. Poole, (2009). "Prospects of Nanostructure-Based Solar Cells for Manufacturing Future Generations of Photovoltaic Modules". International Journal of Photoenergy 2009: 1. doi:10.1155/2009/154059.
44. Eperon, Giles E.; Stranks, Samuel D.; Menelaou, Christopher; Johnston, Michael B.; Herz, Laura M.; Snaith, Henry J. (2014). "Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells". Energy & Environmental Science 7 (3): 982. doi:10.1039/C3EE43822H.
45. Noel, Nakita K.; Stranks, Samuel D.; Abate, Antonio; Wehrenfennig, Christian; Guarnera, Simone; Haghighirad, Amir-Abbas; Sadhanala, Aditya; Eperon, Giles E.; Pathak, Sandeep K.; Johnston, Michael B.; Petrozza, Annamaria; Herz, Laura M.; Snaith, Henry J. (1 May 2014). "Lead-free organic–inorganic tin halide perovskites for photovoltaic applications". Energy & Environmental Science 7 (9): 3061. doi:10.1039/C4EE01076K.
46. "Civil Engineering (May 13, 2014)".
47. "Solar Reviews (May 05, 2014)".
48. "Industry Market Trends." Is Perovskite the Future of Solar Cells? N.p., 06 Dec. 2013. Web. 21 Jan. 2015.
49. Feng, Wenchun, and Garfunkel Group. "Perovskite Solar Cells." Rutgers University. 07 Mar. 2014. Lecture.
50. Snaith, Henry J. "Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells." The Journal of Physical Chemistry Letters4.21 (2013): 3623-630. Web.
51. Jeon, Nam Joong, Jun Hong Noh, Young Chang Kim, Woon Seok Yang, Seungchan Ryu, and Sang Il Seok. "Solvent Engineering for High-performance Inorganic–organic Hybrid Perovskite Solar Cells." Nature Materials 13 (2014): 897-903. Web. 21 Jan. 2015.
52. Yuanyuan Zhou, Mengjin Yang, Wenwen Wu, Alexander L. Vasiliev, Kai Zhu, Nitin P Padture. "Room-Temperature Crystallization of Hybrid-Perovskite Thin Films via Solvent-Solvent Extraction for High-Performance Solar Cells." J. Mater. Chem. A (2015), DOI: 10.1039/C5TA00477B
53. Chen, Qi, Huanping Zhou, Ziruo Hong, Song Luo, Hsin-Sheng Duan, Hsin-Hua Wang, Yongsheng Liu, Gang Li, and Yang Yang. "Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process." Journal of the American Chemical Society 136.2 (2014): 622-25. Web.
54. Liu, Mingzhen, Michael B. Johnston, and Henry J. Snaith. "Efficient Planar Heterojunction Perovskite Solar Cells by Vapour Deposition." Nature501.7467 (2013): 395-98. Web.
55. Gratzel, M. Nature, 414, 338-344 (2001).
56. Khaselev & Turner. Science, 280, 425-427 (1998).
57. Licht, S. J. Phys. Chem. 105, 6281-6294 (2001).
58. Nowotny, J and T. Bak. Int. J of Hydrogen Economy, 30, 521-544 (2005).
59. Green et. al., Progress in Photovoltaics: Research and Applications 2012 10.1002/pip.2163
60. Gevorgyan et. al., Solar Energy Materials and Solar Cells 2013 10.1016/j.solmat.2013.04.024
61. Krebs et. al., Progress in Photovoltaics: Research and Applications 2007 10.1002/pip.794
62. Krebs et. al., Energy Technology 2013 10.1002/ente.201300057
63. Green et. al., Progress in Photovoltaics: Research and Applications 2012 10.1002/pip.2163
64. Jorgensen et. al., Solar Energy Materials and Solar Cells 2008 10.1016/j.solmat.2008.01.005
65. Krebs et. al., Solar Energy Materials and Solar Cells 2009 10.1016/j.solmat.2008.10.004
66. Brabec et. al., Solar Energy Materials and Solar Cells 2004 10.1016/j.solmat.2004.02.030
67. Baskoutas, Sotirios; Terzis, Andreas F. (2006). "Size-dependent band gap of colloidal quantum dots". Journal of Applied Physics 99: 013708. Bibcode:2006JAP....99a3708B. doi:10.1063/1.2158502.
68. H. Sargent, E. (2005). "Infrared Quantum Dots" (PDF). Advanced Materials 17 (5): 515–522. doi:10.1002/adma.200401552.
69. Ip, Alexander H.; Thon, Susanna M.; Hoogland, Sjoerd; Voznyy, Oleksandr; Zhitomirsky, David; Debnath, Ratan; Levina, Larissa; Rollny, Lisa R.; Carey, Graham H.; Fischer, Armin; Kemp, Kyle W.; Kramer, Illan J.; Ning, Zhijun; Labelle, André J.; Chou, Kang Wei; Amassian, Aram; Sargent, Edward H. (2012). "Hybrid passivated colloidal quantum dot solids". Nature Nanotechnology 7 (9): 577–582. Bibcode:2012NatNa...7..577I. doi:10.1038/nnano.2012.127. PMID 22842552.
70. Mitchell, Marit (2014-06-09). "New nanoparticles bring cheaper, lighter solar cells outdoors". Retrieved 2014-08-24.
71. "Photovoltaics Report". Fraunhofer ISE. 28 July 2014. Archived from the original (PDF) on 31 August 2014. Retrieved 31 August 2014.