Petroleum products play a vital role in global economic development and are fundamental to numerous industries as well as daily life. They are commonly used in transportation (as fuels) and in the petrochemical industry for the production of first- and second-generation synthesis intermediates. The most common petroleum products include gasoline, diesel fuels, liquefied petroleum gases (LPG), and lubricants. These products must meet sales standards and specifications to ensure optimal performance and environmental compliance. This study focuses exclusively on lubricants. Among the key properties required for petroleum products are: the octane number for gasoline, the cetane index for diesel, flash point, freezing point, density, vapor pressure, viscosity, and volatility. However, this study concentrates solely on the physicochemical properties of lubricants. Specifically, it investigates their density, relative density, viscosity, and pH which constitute the main objective of this research. The quantities analyzed were measured using standard laboratory equipment such as a precision balance, test tubes, pH paper, and a Hoppler-type viscometer (ball viscometer). All lubricant samples were collected from fuel stations and various informal vendors in Brazzaville, Republic of Congo. The results of the analyses indicate that lubricants sold at fuel stations are denser than those sold by informal vendors. Furthermore, station-sold lubricants are typically yellow in color, while those from informal sources range from light yellow to pink, and tend to exhibit slightly less stable viscosity levels.
Published in | American Journal of Chemical Engineering (Volume 13, Issue 4) |
DOI | 10.11648/j.ajche.20251304.12 |
Page(s) | 83-96 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2025. Published by Science Publishing Group |
Properties, Petroleum Products, Lubricants
Properties | Sample (Citrol Lubricants SAE 40) | |
---|---|---|
Value | Units | |
Mass | 0,211 | kg |
Volume | 2,5.10-4 | m 3 |
Mass Density | 844,080 | Kg /m3 |
Drop Height | 0,250 | m |
Drop Time | 7,800 | s |
Falling Velocity | 0.032 | m/s |
Dynamic Viscosity | 0.85 | Pa. s |
Kinematic Viscosity | 10-3 | m2/s |
Particle Radius | 2,6.10-3 | m |
Liquid Density | 0,844 | - |
Ball Density (or Mass Density of the Ball) | 2700 | Kg /m3 |
Water Density (4°C) | 1000 | Kg /m3 |
Color | Yellow | - |
Temperature | 20 | °C |
pH | - |
Properties | Sample (Motor oil) | |
---|---|---|
Value | Units | |
Mass | 0,215 | kg |
Volume | 2,5.10-4 | m 3 |
Mass Density | 860,760 | Kg /m3 |
Drop Height | 0,250 | m |
Drop Time | 6,680 | s |
Falling Velocity | 0,037 | m/s |
Dynamic Viscosity | 0,73 | Pa. s |
Kinematic Viscosity | 8,51.10-4 | m2/s |
Particle Radius | 2,6.10-3 | m |
Liquid Density | 0,860 | - |
Ball Density (or Mass Density of the Ball) | 2700 | Kg /m3 |
Water Density (4°C) | 1000 | Kg /m3 |
Color | Light yellow | - |
Temperature | 20 | °C |
pH | 6 | - |
Properties | Sample (Puma Lubricants) | |
---|---|---|
Valeur | Unités | |
Mass | 0,211 | kg |
Volume | 2,5.10-4 | m 3 |
Mass Density | 845,720 | Kg /m3 |
Drop Height | 0,250 | m |
Drop Time | 6,190 | s |
Falling Velocity | 0,040 | m/s |
Dynamic Viscosity | 0,68 | Pa. s |
Kinematic Viscosity | 8,07.10-4 | m2/s |
Particle Radius | 2,6.10-3 | m |
Liquid Density | 0,845 | - |
Ball Density (or Mass Density of the Ball) | 2700 | Kg /m3 |
Water Density (4°C) | 1000 | Kg /m3 |
Color | Dark yellow | - |
Temperature | 20 | °C |
pH | 5 | - |
Properties | Sample (Motul Moto) | |
---|---|---|
Value | Units | |
Mass | 0,212 | kg |
Volume | 2,5.10-4 | m 3 |
Mass Density | 849 | Kg /m3 |
Drop Height | 0,250 | m |
Drop Time | 6,210 | s |
Falling Velocity | 0,040 | m/s |
Dynamic Viscosity | 0,68 | Pa. s |
Kinematic Viscosity | 8,03.10-4 | m2/s |
Particle Radius | 2,6.10-3 | m |
Liquid Density | 0,849 | - |
Ball Density (or Mass Density of the Ball) | 2700 | Kg /m3 |
Water Density (4°C) | 1000 | Kg /m3 |
Color | Deep yellow | - |
Temperature | 20 | °C |
pH | 6 | - |
Properties | Sample (Rubia) | |
---|---|---|
Value | Units | |
Mass | 0,084 | kg |
Volume | 10-4 | m 3 |
Mass Density | 840 | Kg /m3 |
Drop Height | 0,183 | m |
Drop Time | 11,600 | s |
Falling Velocity | 0,015 | m/s |
Dynamic Viscosity | 1,68 | Pa. s |
Kinematic Viscosity | 0,002 | m2/s |
Particle Radius | 2,5.10-3 | m |
Liquid Density | 0,840 | - |
Ball Density (or Mass Density of the Ball) | 2700 | Kg /m3 |
Water Density (4°C) | 1000 | Kg /m3 |
Color | Dark yellow | - |
Temperature | 20 | °C |
pH | 6 | - |
Properties | Sample (Quartz) | |
---|---|---|
Value | Units | |
Mass | 0,085 | kg |
Volume | 10-4 | m 3 |
Mass Density | 850 | Kg /m3 |
Drop Height | 0,183 | m |
Drop Time | 7,730 | s |
Falling Velocity | 0,023 | m/s |
Dynamic Viscosity | 1,09 | Pa. s |
Kinematic Viscosity | 0,001 | m2/s |
Particle Radius | 2,5.10-3 | m |
Liquid Density | 0,850 | - |
Ball Density (or Mass Density of the Ball) | 2700 | Kg /m3 |
Water Density (4°C) | 1000 | Kg /m3 |
Color | Dark yellow | - |
Temperature | 20 | °C |
pH | 5 | - |
Properties | Sample (La base) | |
---|---|---|
Value | Units | |
Mass | 0,210 | kg |
Volume | 2,5.10-4 | m 3 |
Mass Density | 841,56 | Kg /m3 |
Drop Height | 0,183 | m |
Drop Time | 6,6 | s |
Falling Velocity | 0,037 | m/s |
Dynamic Viscosity | 0,740 | Pa. s |
Kinematic Viscosity | 8,79.10-4 | m2/s |
Particle Radius | 2,6.10-3 | m |
Liquid Density | 0,840 | - |
Ball Density (or Mass Density of the Ball) | 2700 | Kg /m3 |
Water Density (4°C) | 1000 | Kg /m3 |
Color | Light yellow | - |
Temperature | 20 | °C |
pH | 5 | - |
Properties | Sample (Mpila/Chakona) | |
---|---|---|
Value | Units | |
Mass | 0,206 | kg |
Volume | 2,5.10-4 | m 3 |
Mass Density | 824 | Kg /m3 |
Drop Height | 0,250 | m |
Drop Time | 6,21 | s |
Falling Velocity | 0,040 | m/s |
Dynamic Viscosity | 0,69 | Pa. s |
Kinematic Viscosity | 8,38.10-4 | m2/s |
Particle Radius | 2,6.10-3 | m |
Liquid Density | 0,820 | - |
Ball Density (or Mass Density of the Ball) | 2700 | Kg /m3 |
Water Density (4°C) | 1000 | Kg /m3 |
Color | Orange | - |
Temperature | 20 | °C |
pH | 6 | - |
Properties | Sample (Rond-Point Moungali) | |
---|---|---|
Value | Units | |
Mass | 0,204 | kg |
Volume | 2,5.10-4 | m 3 |
Mass Density | 819.96 | Kg /m3 |
Drop Height | 0,250 | m |
Drop Time | 7.67 | s |
Falling Velocity | 0,032 | m/s |
Dynamic Viscosity | 0,86 | Pa. s |
Kinematic Viscosity | 1,05.10-3 | m2/s |
Particle Radius | 2,6.10-3 | m |
Liquid Density | 0,81 | - |
Ball Density (or Mass Density of the Ball) | 2700 | Kg /m3 |
Water Density (4°C) | 1000 | Kg /m3 |
Color | Orange | - |
Temperature | 20 | °C |
pH | 5 | - |
Properties | Sample (Av des 3 Martyrs) | |
---|---|---|
Value | Units | |
Mass | 0,207 | kg |
Volume | 2,5.10-4 | m 3 |
Mass Density | 828,68 | Kg /m3 |
Drop Height | 0,250 | m |
Drop Time | 6,88 | s |
Falling Velocity | 0,036 | m/s |
Dynamic Viscosity | 0,766 | Pa. s |
Kinematic Viscosity | 9,24..10-4 | m2/s |
Particle Radius | 2,6.10-3 | m |
Liquid Density | 0,828 | - |
Ball Density (or Mass Density of the Ball) | 2700 | Kg /m3 |
Water Density (4°C) | 1000 | Kg /m3 |
Color | Orange | - |
Temperature | 20 | °C |
Properties | 5 | - |
pH | Potential of Hydrogen |
SAE | Society of Automotive Engeneer |
[1] | Hélène FAY (2011): Films Lubrifiants Supramoléculaires Organisés: de la Microstructure aux Propriétés Tribologiques, Thèse de Doctorat, école doctorale des sciences chimiques, l’université bordeaux 1, p. 3. |
[2] | LAOUADI Bouzid (2019): Lubrification thermo-hydrodynamique des paliers soumis à des chargements statiques et dynamiques lubrifiés par des fluides à rhéologie complexe: Etude théorique et numérique simplifiée, Thèse de Doctorat, Université 8 mai 1945 Guelma Faculté des Sciences et de la Technologie, p. 4. |
[3] | Bell J C. Gasoline engine valve train design evolution and the antiwear requirement of motor oils. J Engine Tribology, ProcInst Mech Engrs, part J (1998) 243 -257. |
[4] | Laouadi Bouzid (2019): Lubrification thermo-hydrodynamique des paliers soumis à des chargements statiques et dynamiques lubrifiés par des fluides à rhéologie complexe: Etude théorique et numérique simplifiée, these pour l’obtention du diplôme de Doctorat en Sciences, Faculté des Sciences et de la Technologie, Université 8 mai 1945 Guelma, p. 10. |
[5] | U. Ruth Charrondiere, David Haytowitz et Barbara Stadlmay. Base de données FAO/INFOODS sur la densité Version 2.0 (2015). Organisation des nations unies pour l’alimentation et l’agriculture: Rome, 2015, p. 2. |
[6] |
Normes internationales ISO 12925-2, Première édition de septembre 2020, p. 3. Disponible sur:
https://www.iso.org/standard/77976.html?utm_source=chatgpt.com |
[7] | Berry, U., Ndzessou, W., Nkeletela, L., Samba, R. et Poaty, E. (2025) Étude de la viscosité des produits pétroliers par la méthode de Hoppler. Progrès en physique et chimie des matériaux, 15, 91-100. |
[8] | Mureithi, E., Mwaonanji, J. et Makinde, O. (2013). Sur l'écoulement de la couche limite sur une surface en mouvement dans un fluide dont la viscosité dépend de la température. Open Journal of Fluid Dynamics, 3, 135-140. |
[9] | Stanislas Ulrich Berry Moukila, Laurette Brigelia Nkeletela, René Samba, Olivier Mabiala Mikanou, Roger Makosso Voula and Dherland Sandrel Kiesse. (2025). Contribution to the Production and Physicochemical Characterization of Pyrolytic Oil From Used Inner Tubes for The Production of Conventional Fuels in Congo Republic (RC), International Journal of Current Advanced Research, 14(06), pp. 289-292. |
[10] |
Le Coin Formation d’In Situ: Les huiles hydrauliques disponible sur:
https://www.fluidestransmissions.com/multimedia/3567.pdf (consulté le 28 aout 2025). |
[11] | Noria corporation: Mesure de la densité relative des lubrifiants, disponible sur: achinerylubrication.com/Read/29319/measuring-relative-density#:~:text=The%20density%20of%20most%20oils,to%20sink%20in%20the%20water (consulté le 28 aout 2025). |
[12] |
Agence Française de Normalisation Editions: Produits pétroliers. Mesure de la viscosité cinématique et calcul de la viscosité dynamique. Disponible sur:
https://www.boutique.afnor.org/fr-fr/norme/nf-t60100/produits-petroliers-mesure-de-la-viscosite-cinematique-et-calcul-de-la-visc/fa031910/78872 (Consulté le 28 aout 2025). |
[13] |
WinGD. Lubricants Guideline. Disponible sur:
https://wingd.com/media/p0pl2f43/lubricants.pdf (consulté le 23 aout 2025). |
[14] |
Blaser Swisslube S. à. r. l.: Maniement et entretien des lubrifiants réfrigérants miscibles à l‘eau. Disponible sur:
https://blaser.com/wpcontent/uploads/blaser_handling_and_care_14.214_fr_f.pdf (consulté le 222 aout 2025). |
[15] |
The Brix Meister. Huiles industrielles et pH. Disponible sur:
https://www.atago.net/fr/databook/databook-ph_industrial-oil.php?srsltid=AfmBOorLur9jOAILD_Qv6kRB8KtIj9NW1ntCd8yZiNDpGsLDjGQ5jY3t (Consulté le 28 aout 2025). |
APA Style
Berry, U., Ndzessou, W. B., Nkeletela, L. B., Samba, R. E. J., Poaty, E. M. (2025). Comparative Study of the Physicochemical Properties of Petroleum Products Sold in the Republic of Congo: The Case of Lubricants. American Journal of Chemical Engineering, 13(4), 83-96. https://doi.org/10.11648/j.ajche.20251304.12
ACS Style
Berry, U.; Ndzessou, W. B.; Nkeletela, L. B.; Samba, R. E. J.; Poaty, E. M. Comparative Study of the Physicochemical Properties of Petroleum Products Sold in the Republic of Congo: The Case of Lubricants. Am. J. Chem. Eng. 2025, 13(4), 83-96. doi: 10.11648/j.ajche.20251304.12
@article{10.11648/j.ajche.20251304.12, author = {Ulrich Berry and Westinevy Benarez Ndzessou and Laurette Brigelia Nkeletela and René Evrard Josué Samba and Ermelan Makaya Poaty}, title = {Comparative Study of the Physicochemical Properties of Petroleum Products Sold in the Republic of Congo: The Case of Lubricants }, journal = {American Journal of Chemical Engineering}, volume = {13}, number = {4}, pages = {83-96}, doi = {10.11648/j.ajche.20251304.12}, url = {https://doi.org/10.11648/j.ajche.20251304.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajche.20251304.12}, abstract = {Petroleum products play a vital role in global economic development and are fundamental to numerous industries as well as daily life. They are commonly used in transportation (as fuels) and in the petrochemical industry for the production of first- and second-generation synthesis intermediates. The most common petroleum products include gasoline, diesel fuels, liquefied petroleum gases (LPG), and lubricants. These products must meet sales standards and specifications to ensure optimal performance and environmental compliance. This study focuses exclusively on lubricants. Among the key properties required for petroleum products are: the octane number for gasoline, the cetane index for diesel, flash point, freezing point, density, vapor pressure, viscosity, and volatility. However, this study concentrates solely on the physicochemical properties of lubricants. Specifically, it investigates their density, relative density, viscosity, and pH which constitute the main objective of this research. The quantities analyzed were measured using standard laboratory equipment such as a precision balance, test tubes, pH paper, and a Hoppler-type viscometer (ball viscometer). All lubricant samples were collected from fuel stations and various informal vendors in Brazzaville, Republic of Congo. The results of the analyses indicate that lubricants sold at fuel stations are denser than those sold by informal vendors. Furthermore, station-sold lubricants are typically yellow in color, while those from informal sources range from light yellow to pink, and tend to exhibit slightly less stable viscosity levels. }, year = {2025} }
TY - JOUR T1 - Comparative Study of the Physicochemical Properties of Petroleum Products Sold in the Republic of Congo: The Case of Lubricants AU - Ulrich Berry AU - Westinevy Benarez Ndzessou AU - Laurette Brigelia Nkeletela AU - René Evrard Josué Samba AU - Ermelan Makaya Poaty Y1 - 2025/09/23 PY - 2025 N1 - https://doi.org/10.11648/j.ajche.20251304.12 DO - 10.11648/j.ajche.20251304.12 T2 - American Journal of Chemical Engineering JF - American Journal of Chemical Engineering JO - American Journal of Chemical Engineering SP - 83 EP - 96 PB - Science Publishing Group SN - 2330-8613 UR - https://doi.org/10.11648/j.ajche.20251304.12 AB - Petroleum products play a vital role in global economic development and are fundamental to numerous industries as well as daily life. They are commonly used in transportation (as fuels) and in the petrochemical industry for the production of first- and second-generation synthesis intermediates. The most common petroleum products include gasoline, diesel fuels, liquefied petroleum gases (LPG), and lubricants. These products must meet sales standards and specifications to ensure optimal performance and environmental compliance. This study focuses exclusively on lubricants. Among the key properties required for petroleum products are: the octane number for gasoline, the cetane index for diesel, flash point, freezing point, density, vapor pressure, viscosity, and volatility. However, this study concentrates solely on the physicochemical properties of lubricants. Specifically, it investigates their density, relative density, viscosity, and pH which constitute the main objective of this research. The quantities analyzed were measured using standard laboratory equipment such as a precision balance, test tubes, pH paper, and a Hoppler-type viscometer (ball viscometer). All lubricant samples were collected from fuel stations and various informal vendors in Brazzaville, Republic of Congo. The results of the analyses indicate that lubricants sold at fuel stations are denser than those sold by informal vendors. Furthermore, station-sold lubricants are typically yellow in color, while those from informal sources range from light yellow to pink, and tend to exhibit slightly less stable viscosity levels. VL - 13 IS - 4 ER -