American Journal of Modern Physics

| Peer-Reviewed |

A Non Quasi Exact Solvable Eigenvalue Problem with PT-Invariant Non-Hermitian Complex Potential

Received: 27 September 2014    Accepted: 6 January 2015    Published: 27 January 2015
Views:       Downloads:

Share This Article

Abstract

It is well known that the quasi-exact solvable eigenvalues of the Schrödinger equation with potential V(x)=-(ξcosh2x-iM)2 is real for PT-invariant non-Hermitian potential in case the parameter M is odd integer and complex conjugate pairs when M is even integer. In this work the Asymptotic Iteration Method (AIM) were used to solve this problem for M odd and even integer, and for any non-integer M values.

DOI 10.11648/j.ajmp.20150401.14
Published in American Journal of Modern Physics (Volume 4, Issue 1, January 2015)
Page(s) 19-21
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Asymptotic Iteration Method, Eigenvalues, Complex Potential, Non- Quasi Exact Solvable (QES)

References
[1] Carl M. Bender, Stefan Boettcher, Phys. Rev. Lett. 80, 5243–5246 (1998).
[2] Carl M. Bender, Gerald V.Duune, Peter N.Meisnnger, Physics Letters A, Volume 252, Issue 5, page 272- 276 (1 March 1999).
[3] C. Quesen, S. Mallik, B. Bagchi, Int.J.Mod.Phys. A16 2859-2872 (2001).
[4] S. Meyur, S. Debnath, Bulg. J. Phys. 36 (77- 87), (2009).
[5] Qing-Hai Wang, Pramana Journal of physics, V 37, No .2 (315- 322), (2009).
[6] Brice Camus, Journal of Differential Equations, Volume 226, Issue 1, 295- 322 (2006).
[7] M. E. Kellman, Annual Review of Physical Chemistry, vol. 46, pp. 354- 421, (1995).
[8] F. Cannata, G. Junker, and J. Trost, Phys. Lett A 246, 129 (1998).
[9] Tanwa Arpornthip, Carl M. Bender, Pramana Journal of physics, V 37, No. 2 (259- 267), (2009).
[10] G. L´evan, F. Cannata, and A. Ventura, J. Phys. A: Math. Gen. 34, 839 (2001).
[11] A. D. Alhaidari, J. Phys. A: Math. Theor. 40, 6305 (2007).
[12] Bijan Bagchi et al, Int. J. Mod. Phys. A 20, 7107 (2005).
[13] C. M. Bender and S. Boettcher, J. Phys. A: Math. Gen. 31, L 273 (1998).
[14] A Khare and B P Mandal, Phys. Lett. A272, 53 (2000).
[15] H. Ciftci, R. L. Hall, and N. Saad, J. Phys. A: Math. Gen. 36, 11807 (2003).
[16] F. M. Fern´andez, J. Phys. A: Math. Gen. 37, 6173 (2004).
[17] A. J. Sous, J. Mod. Phys. Lett. A 21, 1675 (2006).
[18] A. J. Sous and M. I. EL-Kawni, Int. J. Mod. Phys. A 24, 4169 (2009).
[19] T. Barakat 2006 J. Phys. A: Math. Gen. 39 823, Issue 4 (27 January 2006).
Cite This Article
  • APA Style

    Marwan Izzat El-Kawni, Abdulla Jameel Sous. (2015). A Non Quasi Exact Solvable Eigenvalue Problem with PT-Invariant Non-Hermitian Complex Potential. American Journal of Modern Physics, 4(1), 19-21. https://doi.org/10.11648/j.ajmp.20150401.14

    Copy | Download

    ACS Style

    Marwan Izzat El-Kawni; Abdulla Jameel Sous. A Non Quasi Exact Solvable Eigenvalue Problem with PT-Invariant Non-Hermitian Complex Potential. Am. J. Mod. Phys. 2015, 4(1), 19-21. doi: 10.11648/j.ajmp.20150401.14

    Copy | Download

    AMA Style

    Marwan Izzat El-Kawni, Abdulla Jameel Sous. A Non Quasi Exact Solvable Eigenvalue Problem with PT-Invariant Non-Hermitian Complex Potential. Am J Mod Phys. 2015;4(1):19-21. doi: 10.11648/j.ajmp.20150401.14

    Copy | Download

  • @article{10.11648/j.ajmp.20150401.14,
      author = {Marwan Izzat El-Kawni and Abdulla Jameel Sous},
      title = {A Non Quasi Exact Solvable Eigenvalue Problem with PT-Invariant Non-Hermitian Complex Potential},
      journal = {American Journal of Modern Physics},
      volume = {4},
      number = {1},
      pages = {19-21},
      doi = {10.11648/j.ajmp.20150401.14},
      url = {https://doi.org/10.11648/j.ajmp.20150401.14},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajmp.20150401.14},
      abstract = {It is well known that the quasi-exact solvable eigenvalues of the Schrödinger equation with potential V(x)=-(ξcosh2x-iM)2 is real for PT-invariant non-Hermitian potential in case the parameter M is odd integer and complex conjugate pairs when M is even integer. In this work the Asymptotic Iteration Method (AIM) were used to solve this problem for M odd and even integer, and for any non-integer M values.},
     year = {2015}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - A Non Quasi Exact Solvable Eigenvalue Problem with PT-Invariant Non-Hermitian Complex Potential
    AU  - Marwan Izzat El-Kawni
    AU  - Abdulla Jameel Sous
    Y1  - 2015/01/27
    PY  - 2015
    N1  - https://doi.org/10.11648/j.ajmp.20150401.14
    DO  - 10.11648/j.ajmp.20150401.14
    T2  - American Journal of Modern Physics
    JF  - American Journal of Modern Physics
    JO  - American Journal of Modern Physics
    SP  - 19
    EP  - 21
    PB  - Science Publishing Group
    SN  - 2326-8891
    UR  - https://doi.org/10.11648/j.ajmp.20150401.14
    AB  - It is well known that the quasi-exact solvable eigenvalues of the Schrödinger equation with potential V(x)=-(ξcosh2x-iM)2 is real for PT-invariant non-Hermitian potential in case the parameter M is odd integer and complex conjugate pairs when M is even integer. In this work the Asymptotic Iteration Method (AIM) were used to solve this problem for M odd and even integer, and for any non-integer M values.
    VL  - 4
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • College of Science, Al-Quds Open University, Nablus, PO Box 893, Palestine

  • College of Science, Al-Quds Open University, Nablus, PO Box 893, Palestine

  • Sections