American Journal of Modern Physics

| Peer-Reviewed |

Secondary Phase Transition of Ising Model

Received: 18 July 2014    Accepted: 29 July 2014    Published: 10 August 2014
Views:       Downloads:

Share This Article

Abstract

Lttice-spin phonons are considered, which make the heat capacity at the critical temperature satisfy experimental observations better. There is a BEC phase transition in an Ising model attributable to the lattice-spin phonons. We proved that the spin-wave theory only is available after BEC transition, and the magnons have the same characteristics as the lattice-spin phonons’, resulting from quantum effect. Energy-level overlap effect at ultra-low temperature is found. A prediction of BEC phase transition in a crystal is put forward as our theory generalization.

DOI 10.11648/j.ajmp.20140304.15
Published in American Journal of Modern Physics (Volume 3, Issue 4, July 2014)
Page(s) 178-183
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Ising Model, Magnetization, Heat Capacity, BEC, Spin-Wave Theory

References
[1] You-gang Feng 2011 arxiv:1111.2233
[2] K. B. Davis, M. -O. Mewes, M. R. Andrews, N. J .van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, 1995 Phys. Rev. Lett. 75 3469
[3] M. H. Anderson, J. R. Ensher, M. R. Matthew, C. E. Wieman, and E. A. Cornell, 1995 Science 269 198
[4] N. R. Newbury, C. J. Myatt, and C. E. Wieman 1995 Phys. Rev. A 51 R2680
[5] Wolfgang Petrich, Michael H. Anderso, Jason R. Ensher, And Eric A. Cornell 1995 Phys. Rev. Lett. 74 3352
[6] M. Erhard, H. Schmaljohann, J. Kronjäger, K. Bongs, and K. Sengstock 2004 Phys. Rev. A 70 031602
[7] Axel Griesmaier, Jorg Werner, Sven Hensler, Jurgen Stuhler, and Tilman Pfau 2005 Phys. Rev. Lett. 94 160401
[8] D. Reyes, A. Paduan-Filho, and M. A. Continentino 2008 Phys. Rev. B 77 052405
[9] T. Nikuni, M. Oshikawa, A. Oosawa, and H. Tanaka 2000 Phys. Rev. Lett. 84 5868
[10] M. Jaime, V. F. Correa, N. Harrison, C. D. Batista, N. Kawashima, Y. Kazuma, G. A. Jorge, R. Stern, I. Heinmaa, S. A. Zvyagin, Y. Sasago, and K. Uchinokura 2004 Phys. Rev. Lett. 93 087203
[11] J. Sirker, A. Weisse and O. P. Sushkov 2004 Europhys. Lett. 68 275
[12] A. V. Syromyatnikov 2007 Phys. Rev. B 75 134421
[13] Dagim Tilahun, R. A. Duine, and A. H. MacDonald 2011 Phys. Rev. A 84 033622
[14] K. Mikelsons and J. K. Freericks 2011 Phys. Rev A 83 043609
[15] You-Gang Feng published in this Journal with this paper
[16] R. Kubo 1996 Rep. Prog. Phys. 29 255-284
[17] Charles Kittel 1996 Introduction to solid state physics 7th. Edit. (New York, John Wiley) p124
[18] R.K.Pathria 2001 Statistical mechanics 2nd. Edit. (Singapore, Elsevier) p157-168
[19] T. Holstein, H. Primakoff 1940 Phys. Rev. 58 1098
[20] Freeman J. Dyson 1956 Phys. Rev. 102 1217
[21] Conyers Herring and Charles Kittel 1951 Phys. Rev. 81 869
[22] Takeo MATSUBARA and Hirotsugu MATSUDA 1956 Prog. Theor. Phys. 16(6) 569
[23] F. Bloch 1930 Zeit. Physik 61 206; 1932 Zeit. Physik 74 295
[24] M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach, S. Gupta, Z. Hadzibabic, and W. Ketterle, 2003 Phys. Rev. Lett. 19 250401-1
[25] J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Szymańska, R. Andrė, J. L. Stachli, V. Savona, P. B. Littlewood, B. Deveaud and Le Si Dang 2006 Nature 443 409
[26] M O Hase and J F F Mendes 2008 J. Phys. A.Math. Theor. 41 145002
[27] Yuki Kawaguchi and Masahito Ueda 2012 Physical Reports 520 253
[28] M. Blackman 1935 Proc. Roy. Soc. A148 365; A149 117
[29] E. W. Kellermann 1941 Proc. Roy. Soc. A178 17
[30] Huber, Greg 1982 Am. Math. Monthly 89(5) 301.
Cite This Article
  • APA Style

    You-Gang Feng. (2014). Secondary Phase Transition of Ising Model. American Journal of Modern Physics, 3(4), 178-183. https://doi.org/10.11648/j.ajmp.20140304.15

    Copy | Download

    ACS Style

    You-Gang Feng. Secondary Phase Transition of Ising Model. Am. J. Mod. Phys. 2014, 3(4), 178-183. doi: 10.11648/j.ajmp.20140304.15

    Copy | Download

    AMA Style

    You-Gang Feng. Secondary Phase Transition of Ising Model. Am J Mod Phys. 2014;3(4):178-183. doi: 10.11648/j.ajmp.20140304.15

    Copy | Download

  • @article{10.11648/j.ajmp.20140304.15,
      author = {You-Gang Feng},
      title = {Secondary Phase Transition of Ising Model},
      journal = {American Journal of Modern Physics},
      volume = {3},
      number = {4},
      pages = {178-183},
      doi = {10.11648/j.ajmp.20140304.15},
      url = {https://doi.org/10.11648/j.ajmp.20140304.15},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajmp.20140304.15},
      abstract = {Lttice-spin phonons are considered, which make the heat capacity at the critical temperature satisfy experimental observations better. There is a BEC phase transition in an Ising model attributable to the lattice-spin phonons. We proved that the spin-wave theory only is available after BEC transition, and the magnons have the same characteristics as the lattice-spin phonons’, resulting from quantum effect. Energy-level overlap effect at ultra-low temperature is found. A prediction of BEC phase transition in a crystal is put forward as our theory generalization.},
     year = {2014}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Secondary Phase Transition of Ising Model
    AU  - You-Gang Feng
    Y1  - 2014/08/10
    PY  - 2014
    N1  - https://doi.org/10.11648/j.ajmp.20140304.15
    DO  - 10.11648/j.ajmp.20140304.15
    T2  - American Journal of Modern Physics
    JF  - American Journal of Modern Physics
    JO  - American Journal of Modern Physics
    SP  - 178
    EP  - 183
    PB  - Science Publishing Group
    SN  - 2326-8891
    UR  - https://doi.org/10.11648/j.ajmp.20140304.15
    AB  - Lttice-spin phonons are considered, which make the heat capacity at the critical temperature satisfy experimental observations better. There is a BEC phase transition in an Ising model attributable to the lattice-spin phonons. We proved that the spin-wave theory only is available after BEC transition, and the magnons have the same characteristics as the lattice-spin phonons’, resulting from quantum effect. Energy-level overlap effect at ultra-low temperature is found. A prediction of BEC phase transition in a crystal is put forward as our theory generalization.
    VL  - 3
    IS  - 4
    ER  - 

    Copy | Download

Author Information
  • College of Science, Guizhou University, Huaxi, Guiyang, 550025 China

  • Sections